Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 23))

Abstract

Peas are distributed worldwide. Both the balanced composition (protein 20–30%, starch 20–50%, sugars 4–10%) and the negligible amounts of deleterious compounds like protease inhibitors or lectins make pea a good source of animal and human nutrition. Since pea, like the other relevant grain legumes, has the ability to undergo symbiosis with Rhizobia, protein production can be several times higher in legumes as compared to cereals. In addition, pea may well become an “industrial crop” due to some unique features of its starch, which can serve as a raw material, e.g., biodegradable plastics. It can be expected that the acreage will increase when certain breeding objectives like pathogen resistance and stress tolerance are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson RG, Gardner RC (1991) Agrobacterium-mediated transformation of pepino and regeneration of transgenic plants. Plant Cell Rep 10:208–212

    Article  CAS  Google Scholar 

  • Beachy R (1990) Coat protein mediated resistance against virus infection. Annu Rev Phytopathol 28:451–474

    Article  CAS  Google Scholar 

  • Binns AN, Thomashaw MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42:575–606

    Article  CAS  Google Scholar 

  • Broer I, Arnold W, Wohlleben W, Pühler (1989) The phosphinotricin N-acetyltransferase gene as a selectable marker for plant genetic engineering. In: Galling G (ed) Proc Braunschweig Symp on Applied molecular biology. Zentralstelle für Weiterbildung der TU Braunschweig, Germany, pp 240–246

    Google Scholar 

  • Byrne MC, McDonell RE, Wright MS, Carnes MG (1987) Strain and cultivar specificity in the Agrobacterium-soybean interaction. Plant Cell Tissue Organ Cult 8:3–15

    Article  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merlo JM, Sciaky D, Montoya AI, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  PubMed  CAS  Google Scholar 

  • Davies DR, Hamilton J, Mullineaux PM (1992) A progress report on pea transformation. Proc 1st Eur Conf on Grain legumes 1992, Angers. AEP, Paris, pp 123–124

    Google Scholar 

  • Eapen S, Köhler F, Gerdemann M, Schieder O (1987) Cultivar dependance of transformation rates in moth bean after co-cultivation of protoplasts with Agrobacterium tumefaciens. Theor Appl Genet 75:207–210

    Article  Google Scholar 

  • Farinelli L, Malnoe P, Collet GF (1992) Heterologous encapsidation of potato virus Y strain O (PVY°) with the transgenic coat protein of PVY strain N (PVYN) in Solanum tuberosum cv. Bintje. Bio/Technology 10: 1020–1025

    Article  CAS  Google Scholar 

  • Gadani F, Mansky LM, Medici R, Miller WA, Hill JH (1990) Genetic engineering of plants for virus resistance. Arch Virol 115:1–21

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Constabel F, Shyluk JP (1974) Organogenesis in callus from shoot apices of Pisum sativum L. Physiol Plant 30:125–128

    Google Scholar 

  • Griga M, Tejklova E, Novak FJ, Kubalakova M (1986) In vitro clonal propagation of Pisum sativum L. Plant Cell Tissue Organ Cult 6:95–104

    Google Scholar 

  • Hebblethwaite PD, Heath MC, Dawkins TCK(1985) The pea crop. Butterworth, London

    Google Scholar 

  • Hobbs SLA, Jackson JA, Mahon JD (1989) Specificity of strain and genotype in the susceptibility of pea to Agrobacterium tumefaciens. Plant Cell Rep 8:274–277

    Google Scholar 

  • Hobbs SLA, Jackson JA, Baliski DS, DeLong CMO, Mahon JD (1990) Genotype and promoter induced variability in transient β-glucuronidase expression in pea protoplasts. Plant Cell( Rep 9:17–20

    Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on the separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Google Scholar 

  • Hood EE, Fraley RT, Chilton MD (1987) Virulence of Agrobacterium tumefaciens strain A281 on legumes. Plant Physiol 83:529–534

    Google Scholar 

  • Hussey G, Gunn HV (1984) Plant production in pea (Pisum sativum L. cvs. Puget and Upton) from longterm callus with superficial meristems. Plant Sei Lett 37:143–148

    Google Scholar 

  • Hussey G, Johnson RD, Warren S (1989) Transformation of meristematic cells in the shoot apex of cultured pea shoots by Agrobacterium tumefaciens and A. rhizogenes. Protoplasma 148:101–105

    Google Scholar 

  • Jackson JA, Hobbs SLA (1990) Rapid multiple shoot production from cotyledonary node explants of pea (Pisum sativum L.). In Vitro Cell Dev Biol 26:835–838

    Google Scholar 

  • Janssen BJ, Gardner RC (1989) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol 14:61–72

    Google Scholar 

  • Jordan MC, Rempel H, Hobbs SLA (1992) Genetic transformation of Pisum sativum L. via Agrobacterium tumefaciens or particle bombardment. Proc 1st Eur Conf on Grain legumes 1992, Angers. AEP, Paris, pp 115–116

    Google Scholar 

  • Kartha KK, Gamborg OL, Constabel F (1974) Regeneration of pea (Pisum sativum L.) plants from shoot apical meristems. Z Pflanzenphysiol 72:172–176

    Google Scholar 

  • Kathen A de, Jacobsen H-J (1990) Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Rep 9:276–279

    Google Scholar 

  • Kathen A de, Jacobsen H-J, (1992) Induction of competence for transformation in Pisum sativum L. Proc 1st Eur Conf on Grain legumes 1992, Angers. AEP, Paris, pp 117–118

    Google Scholar 

  • Khetarpal RK, Maury Y (1987) Pea seed-borne mosaic virus: a review. Agronomie 7(4): 215–224

    Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1985) The role of bacterial attachment in the transformation of cell-wall-regenerating tobacco protoplasts by Agrobacterium tumefaciens. Planta 166:300–308

    Google Scholar 

  • Kysely W, Myers JR, Lazzeri PA, Collins GB, Jacobsen H-J (1987) Plant regeneration via somatic embryogenesis in pea (Pisum sativum L.). Plant Cell Rep 6:305–308

    Google Scholar 

  • Lazzeri PA, Brettschneider R, Liihrs R, Lorz H (1991) Stable transformation of barley via PEG-induced direct DNA uptake into protoplasts. Theor Appl Genet 81:437–444

    Google Scholar 

  • Lehminger-Mertens R, Jacobsen H-J (1989a) Protoplast regeneration and organogenesis from pea protoplasts. In Vitro Cell Dev Biol 25:571–574

    Google Scholar 

  • Lehminger-Mertens R, Jacobsen H-J (1989b) Plant regeneration from pea protoplasts via somatic embryogenesis. Plant Cell Rep 8:379–382

    Google Scholar 

  • Lindbo J A, Dougherty WG (1992) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–733

    Google Scholar 

  • Lulsdorf MM, Rempel H, Jackson J, Baliski DS, Hobbs SLA (1991) Optimizing the production of transformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains. Plant Cell Rep 9:479–483

    Google Scholar 

  • Makasheva RK (1983) The pea Amerind, New Delhi

    Google Scholar 

  • Malmberg R (1979) Regeneration of whole plants from callus culture of diverse genetic lines of Pisum sativum L. Planta 146:243–244

    Google Scholar 

  • Mroginski LA, Kartha KK (1981) Regeneration of pea (Pisum sativum L. cv. Century) plants by in vitro culture of immature leaflets. Plant Cell Rep 1:64–66

    Google Scholar 

  • Natali L, Cavallini A (1987) Regeneration of pea (Pisum sativum L.) plantlets by in vitro culture of immature embryos. Plant Breed 99:172–176

    Google Scholar 

  • Nauerby B, Madsen J, Christiansen J, Wyndaele R (1991) A rapid and efficient regeneration system for pea (Pisum sativum L.), suitable for transformation. Plant Cell Rep 9:676–679

    Google Scholar 

  • Nielsen SVA, Poulsen GB, Larsen ME (1991) Regeneration of shoots from pea hypocotyl explants. Physiol Plant 82:99–102

    Google Scholar 

  • Penza R, Lurquin PF, Fillipone E (1991) Gene transfer by cocultivation of mature embryos with Agrobacterium tumefaciens: application to cowpea (Vigna unguiculata Walp). J Plant Physiol 138:39–43

    Google Scholar 

  • Potrykus I (1990) Gene transfer to plants: assessment and perspectives. Physiol Plant 79:125–134

    Google Scholar 

  • Powell PA, Sanders PR, Turner N, Fraley RT, Beachy RN (1990) Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology 175:124–130

    Google Scholar 

  • Puonti-Kaerlas J, Eriksson T (1988) Improved protoplast culture and regeneration of shoots in pea (Pisum sativum L.). Plant Cell Rep 7:242–245

    Google Scholar 

  • Pounti-Kaerlas J, Stabel P, Eriksson T (1989) Transformation of pea (Pisum sativum L.) by Agrobacterium tumefaciens. Plant Cell Rep 8:321–324

    Google Scholar 

  • Puonti-Kaerlas J, Ottosson A, Eriksson T (1992) Survival and growth of pea protoplasts after transformation by electroporation. Plant Cell Tissue Organ Cult 30:141–148

    Google Scholar 

  • Robbs SL, Hawes MC, Lin H-J, Pueppke SG, Smith LY (1991) Inheritance of resistance to crown gall in Pisum sativum. Plant Physiol 95:52–57

    Google Scholar 

  • Sangwan RS, Bourgeois Y, Sangwan-Norreel BS (1991) Genetic transformation of Arabidopsis zygotic embryos and identification of critical parameters influencing transformation efficiency. Mol Gen Genet 230:475–485

    Google Scholar 

  • Sangwan RS, Bourgeois Y, Brown S, Vasseur G, Sangwan-Norreel B (1992) Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188:439–456

    Google Scholar 

  • Schaerer S, Pilet P-E (1991) Roots, explants and protoplasts from pea transformed with strains of Agrobacterium tumefaciens and A. rhizogenes. Plant Sci 78:247–258

    Google Scholar 

  • Schlappi M, Hohn B (1992) Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell 4:7–16

    Article  PubMed  Google Scholar 

  • Strauch E, Wohlleben W, Pühler A (1988) Cloning of a phosphinotricin N-acetyltransferase from Streptomyces viridochromogenes Tii494 and its expression in Streptomyces lividans and Escherichia coli. Gene 25:65–67

    Article  Google Scholar 

  • Tetu T, Sangwan RS, Sangwan-Norreel BS (1990) Direct somatic embryogenesis and organogenesis in cultured immature zygotic embryos of Pisum sativum L. J Plant Physiol 137:102–109

    Google Scholar 

  • Topfer R, Gronenborn B, Schell J, Steinbiss H-H (1989) Uptake and transient expression of chimeric genes in seed derived embryos. Plant Cell 1:133–139

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa (1990) Construction of an intron-containing marker-gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  PubMed  CAS  Google Scholar 

  • Wilson TMA, Watkins PAC (1986) Influence of exogenous viral coat protein on the cotranslational disassembly of tobacco mosaic virus (TMV) particles in vitro. Virology 140:132–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Kathen, A., Jacobsen, HJ. (1993). Transformation in Pea (Pisum sativum L.). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering IV. Biotechnology in Agriculture and Forestry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78037-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78037-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78039-4

  • Online ISBN: 978-3-642-78037-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics