Skip to main content

Transformation of Petunia and Corn Plants (Petunia hybrida and Zea mays) Using Agrobacterium tumefaciens and the Shoot Apex

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 23))

Abstract

Agrobacterium tumefaciens has evolved a reliable mechanism to transfer DNA into the genome of plant cells and is the most efficient gene vector available. However, the host range of the bacterium has been thought to be restricted to a narrow range of plant species (DeCleene 1985). This range is generally considered to include all dicotyledonous families; however, many dicot species are refractory to infection and members of some monocotyledonous families can be transformed. Furthermore, the apparent requirement for the regeneration of plants from callus or embryogenic callus imposed serious limits to the practical range of plants that could be transformed using A. tumefaciens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Braun A (1962) Tumor inception and development in the crown gall disease. Annu Rev Plant Physiol 13:533–558

    Article  CAS  Google Scholar 

  • Dale PJ, Marks MS, Brown MM, Woolston CJ, Gunn HV, Mullineaux PM, Lewis DM, Kemp JM, Chen DF, Gilmour DM, Flavell RB (1989) Agroinfection of wheat: inoculation of in vitro grown seedlings and embryos. Plant Sei 63:237–245

    Article  CAS  Google Scholar 

  • DeCleene M (1985) The susceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopathol Z 113:81–89

    Article  Google Scholar 

  • Deilaporta SI, Wood J, Hicks JB (1983) A plant DNA minipreparation version II. Plant Mol Biol Reporter 1(4): 19–21

    Article  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for labelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267

    Article  PubMed  CAS  Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technol 8:833–839

    Article  CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer MT, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams WR, Willetts NG, Rice TB, Makey CJ, Kruger RW, Kausch AP, Lemax PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    Article  PubMed  CAS  Google Scholar 

  • Gould JH, Devey ME, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991) Transformation of Zea mays L., using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95:426–434

    Article  PubMed  CAS  Google Scholar 

  • Graves AC, Goldman S (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 43:50

    Article  Google Scholar 

  • Grimsley N, Hohn T, Davis JW, Hohn B (1987) Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179

    Article  CAS  Google Scholar 

  • Hess D, Dressler K, Nimmrichter (1990) Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sei 72:233–244

    Google Scholar 

  • Hohn B, Koukolikova-Nicola Z, Bakkeren G, Grimsley N (1989) Agrobacterium-mediated gene transfer to monocots and dicots. Genome 31:987–992

    Google Scholar 

  • Hood EE, Jen G, Kayes L, Kramer J, Fraley RT, Chilton MD (1984) Restriction endonuclease map of pTiBo542, a potential Ti plasmid vector for genetic engineering of plants. Bio/Technol 2:702–709

    Google Scholar 

  • Jefferson RA (1988) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Bio/Technol 8:535–542

    Google Scholar 

  • Raineri DM, Bottino P, Gordon MP and Nester EW (1990) Agrobacterium transformation of rice (Oryza sativa L.). Bio/Technol 8:33–38

    Google Scholar 

  • Schafer W, Gorz A, Kahl G (1987) T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327:529–531

    Google Scholar 

  • Smith R, Murashige T (1970) In vitro development of isolated shoot apical meristem of angiosperms. Am J Bot 57:562–568

    Article  Google Scholar 

  • Smith R, Murashige T (1982) Primordial leaf and phytohormone effects on excised shoot apical meristems of Coleus blumei Benth. Am J Bot 69:1334–1339

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, van Montague M, Zambriski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Stomp A-M, Loopstra C, Chilton WS, Sederoff RR, Moore LW (1989) Extended host range of Agrobacterium tumefaciens in the genus Pinus. Plant Physiol 92:1226–1232

    Article  Google Scholar 

  • Ulian E, Smith R, Gould J, McKnight T (1988) Transformation of plants via the shoot apex. In Vitro Cell Dev Biol 24:951–954

    Article  Google Scholar 

  • Veluthambi K, Krishnan M, Gould JH, Smith RH, Gelvin SB (1989) Opines stimulate the induction of the VIR genes of the Agrobacterium tumefaciens Ti plasmid. J Bacteriol 171:3696–3703

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gould, J.H., Ulian, E.C., Smith, R.H. (1993). Transformation of Petunia and Corn Plants (Petunia hybrida and Zea mays) Using Agrobacterium tumefaciens and the Shoot Apex. In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering IV. Biotechnology in Agriculture and Forestry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78037-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78037-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78039-4

  • Online ISBN: 978-3-642-78037-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics