Transformation in Cassava (Manihot esculenta Crantz)

  • C. Schöpke
  • C. Franche
  • D. Bogusz
  • P. Chavarriaga
  • C. Fauquet
  • R. N. Beachy
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 23)


Cassava is cultivated throughout the tropics for its starchy, tuberous roots. In Africa it plays an important role as a subsistence crop, while in Latin America cassava is also an industrial crop that is processed into more than 300 products. In Asia it is mainly used for the production of animal feed and for exportation. In terms of caloric production it ranks fourth after rice, wheat, and maize in developing countries (FAO 1987; cited in De Bruijn and Fresco 1989). Compared to other crops, cassava has played a minor role in agricultural research. However, during the last decade, the interest in cassava has grown (Cock 1982; Cooke and Cock 1989) and it was recognized that biotechnology might be a useful tool for cassava improvement (Roca 1984, 1989; CIAT 1989; Bertram 1990). With the aim to concentrate and coordinate efforts using biotechnology for the improvement of cassava, in August 1992 the First International Scientific Meeting of the Cassava Biotechnology Network (CBN) was held in Cartagena, Colombia.


Somatic Embryo Somatic Embryogenesis Coat Protein Gene Cassava Plant Secondary Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alwen A, Benito-Moreno RM, Vincente O, Heberle-Bors E (1992) Plant endogenous β-glucuronidase activity: how to avoid interference with the use of the E. coli: β-glucuronidase as a reporter gene in transgenic plants. Transgen Res 1:63–70CrossRefGoogle Scholar
  2. Bajaj YPS (1983) Cassava plants from meristem cultures freeze-preserved for three years. Field Crops Res 74:161–167CrossRefGoogle Scholar
  3. Beachy RN, Loesch-Fries S, Turner NE (1990) Coat protein-mediated resistance against virus infection. Annu Rev Phytopathol 28:451–474CrossRefGoogle Scholar
  4. Bertram RB (1990) Cassava. In: Persley GJ (ed) Agricultural biotechnology: opportunities for international development. CAB Int, Wallingford, UK, pp 241–261Google Scholar
  5. Cabral GB, Matsumoto K, Aragao F, Teixeria JB, Rech EL (1991) Expressao transiente do gene de β-glucoronidase em protoplastos de mandioca (Manihot esculenta Crantz) utilizando electroporacao.In: Resumos III. Congr Brasileiro de Fisiologia Vegetal. Sociedade Brasileria de Fisilogia Vegetal, Universidade Federal de Vicosa, Vigosa, Brazil, p 88Google Scholar
  6. CIAT (1989) Report on the founding workshop of the advanced cassava research network. CI AT Document 52, Cali, ColombiaGoogle Scholar
  7. Cock JH (1982) Cassava: a basic energy source in the tropics. Science 218:755–762PubMedCrossRefGoogle Scholar
  8. Cooke R, Cock JH (1989) Cassava crops up again. New Sci 122:63–68Google Scholar
  9. Costa AS, Kitajima EW (1972) Cassava common mosaic virus. CMI/AAB, Description of plant viruses, No 90, 4 pp (Issued jointly by the Common Wealth Mycological Inst, Ferry Lane, Kew, Surrey, UK and the Assoc Appl Biol, Culross & Son Ltd, Coupar Angus, Pertshire, Scotland)Google Scholar
  10. De Bruijn GH, Fresco LO (1989) The importance of cassava in world food production. Neth J Agric Sci 37:21–34Google Scholar
  11. Escandon AS, Hahne G (1991) Genotype and composition of culture medium are factors important in the selection for transformed sunflower (Helianthus annueius) callus. Physiol Plant 81:367–376Google Scholar
  12. Fauquet C, Fargette D (1990) African cassava mosaic virus: etiology, epidemology, and control. Plant Dis 74:404–411Google Scholar
  13. Fauquet C, Bogusz D, Chavarriaga P, Franche C, Schopke C, Beachy RN (1992) Cassava viruses and genetic engineering. In: Thotthapilly G, Monti L, Mohan Raj DR, Moore AW (eds) Biotechnology: Enhancing research on tropical crops in Africa. CTA/IITA co-publication, Ibadan, Nigeria pp 287–296Google Scholar
  14. Fitch MMM, Manshard RM, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194Google Scholar
  15. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807Google Scholar
  16. Franche C, Bogusz D, Schopke C, Fauquet C, Beachy RN (1991) Transient gene expression in cassava using high-velocity microprojectiles. Plant Mol Biol 17:493–498Google Scholar
  17. Horsch RB, Klee HJ (1986) Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: role of the T-DNA in the transfer process. Proc Natl Acad Sci USA 83:4428–4432Google Scholar
  18. Hu CY, Chee PP, Chesney RH, Zhou JH, Miller PD, O’Brien WT (1990) Intrinsic GUS like activities in seed plants. Plant Cell Rep 9:1–5Google Scholar
  19. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405Google Scholar
  20. Kartha KK, Gamborg OL, Constabel F, Shyluk JP (1974) Regeneration of cassava plants from apical meristems. Plant Sci Lett 2:107–113Google Scholar
  21. Klee H J, Rogers SG (1989) Plant gene vectors and genetic transformation: plant transformation systems based on the use of Agrobacterium tumefaciens. In: Vasil IK, Schell J (eds) Cell culture and somatic cell genetics of plants, vol 6. Molecular biology of plant nuclear genes. Academic Press, San Diego, pp 1–23Google Scholar
  22. Klein TM, Goff SA, Roth BA, Fromm ME (1990) Applications of the particle gun in plant biology. In: Nijkamp HJJ, van der Plas LHW, and van Artrijk J (eds) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, pp 56–66Google Scholar
  23. Mabanza J (1984) La culture in vitro des protoplastes de manioc (Manihot esculenta Crantz). Etude des possibilités d’induction d’une résistance à la bactériose provoquée par le Xanthomonas manihotis. PhD Thesis, Université des Sciences et Techniques du Languedoc, Montpellier, 193 ppGoogle Scholar
  24. Mabanza J, Jonard R (1983) L’isolement et le développement in vitro des protoplastes de manioc (Manihot esculenta Crantz). C R Soc Biol 177:638–645Google Scholar
  25. Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–79Google Scholar
  26. Meyer H J, van Staden J (1986) Inorganic nutrient requirements of in vitro cultured Manihot esculenta plants. S Afr J Bot 52 -All-AmGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  28. Nzoghe D (1989) Recherche des conditions permettant l’obtention de néoformations chez différents génotypes de Manioc (Manihot esculenta Crantz). Extension à la culture de protoplastes. PhD Thesis, Université de Paris Sud, Centre d’Orsay, 150 ppGoogle Scholar
  29. Plegt L, Bino RJ (1989) β-Glucuronidase activity during development of the male gametophyte from transgenic and non-transgenic plants. Mol Gen Genet 216:321–327Google Scholar
  30. Roca WM (1984) Root and tuber crops: cassava. In: Sharp WR, Evans DA, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 2. MacMillan, New York, pp 269–301Google Scholar
  31. Roca WM (1989) Cassava production and utilization problems and their biotechnological solutions. In: Sasson A, Costarini V (eds) Plant biotechnology for developing countries. Proc Int Symp organized by CTA and FAO, 26–30 June 1989, Luxembourg. The Trinity Press, UK pp 215–219Google Scholar
  32. Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79:206–209Google Scholar
  33. Schôpke C, Franche C, Chavarriaga P, Bogusz D, Fauquet C, Beachy RN (1991) Stable transformation of cassava tissues using Agrobacterium tumefaciens and a particle gun. Abstr 1991 World Congr on Cell and Tissue culture, 16–20 June 1991, Anaheim, California, In Vitro Cell Dev Biol 27(3), pt II: 151AGoogle Scholar
  34. Schrammeijer B, Sijmons PC, van den Elzen PJM, Hoekema A (1990) Meristem transformation of sunflower via Agrobacterium. Plant Cell Rep 9:55–60Google Scholar
  35. Shahin EA, Shepard JF (1980) Cassava mesophyll protoplasts: isolation, proliferation, and shoot formation. Plant Sci Lett 17:459–465Google Scholar
  36. Stamp JA, Henshaw GG (1982) Somatic embryogenesis in cassava. Z Pflanzenphysiol 105:183–187Google Scholar
  37. Stamp JA, Henshaw GG (1982) Somatic embryogenesis in cassava. Z Pflanzenphysiol 105:183–187Google Scholar
  38. Stamp J A, Henshaw GG (1986) Adventitious regeneration in cassava. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London pp 149–157Google Scholar
  39. Stamp J A, Henshaw GG (1987a) Secondary somatic embryogenesis and plant regeneration in cassava. Plant Cell Tissue Organ Cult 10:227–233Google Scholar
  40. Stamp J A, Henshaw GG (1987b) Somatic embryogenesis from clonal leaf tissues of cassava. Ann Bot 59:445–450Google Scholar
  41. Szabados L, Hoyos R, Roca WM (1987a) In vitro somatic embryogenesis and plant regeneration of cassava. Plant Cell Rep 6:248–251CrossRefGoogle Scholar
  42. Szabados L, Narvâez J, Roca WM (1987b) Techniques for isolation and culture of cassava (Manihot esculenta Crantz) protoplasts. Working Document 23. Biotechnology Research Unit, CIAT, Cali, Colombia, 42 pp (Spanish/English)Google Scholar
  43. Twell D, Klein TM, Fromm ME, McCormick S (1989) Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol 91:1270–1274PubMedCrossRefGoogle Scholar
  44. Ulian EC, Smith RH, Gould JH, McKnight TD (1988) Transformation of plants via the shoot apex. In Vitro Cell Dev Biol 24:951–954CrossRefGoogle Scholar
  45. Villegas L (1988) Expresión transitoria en protoplastos de yuca. In: Villegas L (ed) Cultivo de tejidos vegetales aplicado a la producción agrícola. Instituto Internacional de Estudios Avanzados, Unidad de Biotechnología, Caracas, Venezuela, pp 69–80Google Scholar
  46. Villegas L, Santana MA, Bravato M, Zapata C (1988) Hibridación somatica: electrofusión de protoplastos de yuca. In: Villegas L (ed) Cultivo de tejidos vegetales aplicado a la producción agrícola. Instituto Internacional de Estudios Avanzados, Unidad de Biotechnología, Caracas, Venezuela, pp 145–153Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • C. Schöpke
    • 1
  • C. Franche
    • 2
  • D. Bogusz
    • 2
  • P. Chavarriaga
    • 1
  • C. Fauquet
    • 1
  • R. N. Beachy
    • 1
  1. 1.Division of Plant Biology — MRC7, ILTABThe Scripps Research InstituteLa JollaUSA
  2. 2.BSSFT (CTFT/ORSTOM)Nogent sur Marne CédexFrance

Personalised recommendations