Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 23))

Abstract

Citrus is widely grown throughout the tropical and subtropical regions of the world. However, despite breeding programs that have been vigorously pursued in a number of countries during the last century, most presently grown citrus rootstock and scion cultivars have not arisen through conventional breeding. Instead, they originated as chance seedlings or limb or bud sport mutations that were recognized to be horticulturally superior and vegetatively propagated (Hodgson 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An G (1987) Binary Ti vectors for plant transformation and promotor analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  • An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4:277–284

    PubMed  CAS  Google Scholar 

  • Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136

    Article  Google Scholar 

  • Bowman KD, Gmitter FG (1990) Forbidden fruit (Citrus s., Rutaceae) rediscovered in Saint Lucia. Econ Bot 44:165–173

    Article  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sei USA 81:1991–1995

    Article  CAS  Google Scholar 

  • Deilaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  Google Scholar 

  • Durham RE (1990) Mapping genes involved in freezing tolerance in a backcross of Citrus and Poncirus using a linkage map of isozymes and restriction fragment length polymorphisms. PhD Thesis, University of Florida, Gainesville

    Google Scholar 

  • Frost HB, Soost RK (1968) Seed reproduction: development of gametes and embryos. In: Reuther W, Batchelor LD, Webber HJ (eds) The citrus industry, vol 2. University of California Press, Berkeley, pp 292–334

    Google Scholar 

  • Gmitter FG, Moore GA (1986) Plant regeneration from undeveloped ovules and embryogenic calli of Citrus: embryo production, germination, and plant survival. Plant Cell Tissue Organ Cult 6:139–147

    Article  CAS  Google Scholar 

  • Hidaka T, Omura M, Ugaki M, Tomiyama M, Kato A, Ohshima M, Motoyoshi F (1990) Agrobacter-iwm-mediated transformation and regeneration of Citrus spp. from suspension cells. Jpn J Breed 40:199–207

    Google Scholar 

  • Hodgson RW (1967) Horticultural varieties of citrus. In: Reuther W, Batchelor LD, Webber HJ (eds) The citrus industry, vol 1. University of California Press, Berkeley, pp 431–591

    Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    Google Scholar 

  • Jayaswal RK, Veluthambi K, Gelvin SB, Slightom JL (1987) Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens. J Bacteriol 169:5035–5045

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Google Scholar 

  • Kobayashi S, Uchimiya H (1989) Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Jpn J Genet 64:91–97

    Google Scholar 

  • Komari T, Halperin W, Nester EW (1986) Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo542. J Bacteriol 166:88–94

    Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74

    Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Moore GA (1986) In vitro propagation of Citrus rootstocks. HortScience 21:300–301

    Google Scholar 

  • Moore GA, Castle WS (1988) Morphological and isozymic analysis of open-pollinated Citrus rootstock populations. J Hered 79:59–63

    Google Scholar 

  • Moore GA, Jacono CC, Neidigh JL, Lawrence SD, Cline K (1992) Agrobacterium-mQdmtQd transformation of Citrus stem segments and regeneration of transgenic plants. Plant Cell Rep 11:238–242

    Article  CAS  Google Scholar 

  • Murashige T, Tucker DPH (1969) Growth factor requirements of citrus tissue culture. In: Chapman HD (ed) Proc First Intl Citrus Symp, vol 3. University of California Press, Riverside, pp 1155–1161

    Google Scholar 

  • Paszkowski J, Schillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722

    Google Scholar 

  • Rogers SG, Klee HJ, Horsch RB, Fraley RT (1987) Improved vectors for plant transformation: expression cassette vectors and new selectable markers. Methods Enzymol 153:253–277

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Scora RW (1975) On the history and origin of citrus. Bull Torrey Bot Club 102:369–375

    Article  Google Scholar 

  • Soost RK, Cameron JW (1975) Citrus. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University, West Lafayette, Indiana, pp 507–540

    Google Scholar 

  • Uchimiya H, Fushimi T, Hashimoto H, Harada H, Syono K, Sugawara Y (1986) Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L.) Mol Gen Genet 204:204–207

    Article  CAS  Google Scholar 

  • Vardi A, Bleichman S, Aviv D (1990) Genetic transformation of Citrus protoplasts and regeneration of transgenic plants. Plant Sci 69:199–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moore, G.A., Jacono, C.C., Neidigh, J.L., Lawrence, S.D., Cline, K. (1993). Transformation in Citrus . In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering IV. Biotechnology in Agriculture and Forestry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78037-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78037-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78039-4

  • Online ISBN: 978-3-642-78037-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics