Transformation in Oilseed Rape (Brassica napus L.)

  • J. E. Thomzik
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 23)


By virtue of its high oil content (40%) oilseed rape makes an important contribution to the world supply of edible oils. Rapeseed oil accounts for about 13% of the world production of edible oils, putting it in third place after soybean and palm. In addition, coarse colza meal, containing 38 to 45% high qualitiy protein, is the fourth most important source of protein animal feed (RFF 1986; Downey and Robbelen 1989). Thus, B. napus is an important target for crop improvement. The transfer of genes with agronomically relevant qualities is a desirable goal for improving the agronomic character of oilseed rape varieties by genetic engineering.


Hairy Root Brassica Napus Oilseed Rape Mesophyll Protoplast Protoplast Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An G, Costa MA, Mitra A, Ha SB, Marton L (1988) Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol 88:547–552PubMedCrossRefGoogle Scholar
  2. An G, Costa MA, Ha SB (1990) Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2:225–233PubMedCrossRefGoogle Scholar
  3. Barsby TL, Yarrow SA, Shepared JF (1986) A rapid and efficient alternative procedure for the regeneration of plants from hypocotyl protoplasts of Brassica napus. Plant Cell Rep 5:101–103CrossRefGoogle Scholar
  4. Boulter ME, Croy E, Simpson P, Shields R, Croy RRD, Shirsat AH (1990) Transformation of Brassica napus L. (oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes-a. comparison Plant Sei 70:91–99CrossRefGoogle Scholar
  5. Charest PJ, Holbrook LA, Gabard J, Iyer VN, Miki BL (1988) Agrobacterium-mediaited transformation of thin cell layer explants from Brassica napus L. Theor Appl Genet 75:438–145CrossRefGoogle Scholar
  6. Charest PJ, Iyer VN, Miki BL (1989) Virulence of Agrobacterium tumefaciens strains with Brassica napus and Brassica juncea. Plant Cell Rep 8:303–306CrossRefGoogle Scholar
  7. Chuong PV, Pauls KP, Beversdorf WD (1985) A simple culture method for Brassica hypocotyl protoplasts. Plant Cell Rep 4:4–6CrossRefGoogle Scholar
  8. Czernilofsky AP, Hain R, Herrera-Estrella L, Lörz H, Goyvaerts E, Baker BJ, Schell J (1986) Fate of selectable marker DNA integrated into the genome of Nicotiana tabacum. DNA 5:101–113PubMedCrossRefGoogle Scholar
  9. De Block M, Brouwer DD, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in transgenic plants. Plant Physiol 91:694–701PubMedCrossRefGoogle Scholar
  10. Downey RK, Röbbelen G (1989) Brassica species In: Röbbelen G, Downey RK, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, pp 339–362Google Scholar
  11. Fakhrai H (1990) Transformation of rape with Agrobacterium tumefaciens-based vectors. In: Pollard JW, Walker J (eds) Methods in molecular biology 6. Plant cell and tissue culture. Humana Press, Clifton, New York, pp 301–307Google Scholar
  12. Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep 6:321–325Google Scholar
  13. Glimelius K (1984) High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. Physiol Plant 61:38–44Google Scholar
  14. Glimelius K, Djupsjöbacka M, Fellner-Feldegg H (1986) Selection and enrichment of plant protoplast heterokaryons of Brassicaceae by flow sorting. Plant Sei 45:133–141Google Scholar
  15. Guerche P, Jouanin L, Tepfer D, Pelletier G (1987) Genetic transformation of oilseed rape (Brassica napus) by the Ri T-DNA of Agrobacterium rhizogenes and analysis of inheritance of transformed phenotype. Mol Gen Genet 206:382–386Google Scholar
  16. Hain R, Bieseler B, Kindl H, Schröder G, Stöcker R (1990) Expression of stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 15:325–335Google Scholar
  17. Hain R, Reif HJ, Langebartels R, Schreier PH, Stöcker RH, Thomzik JE, Stenzel K, Kindl H, Schmelzer E (1992) Proceedings of the Brighton crop protection conference, pests and disease 7B.5Google Scholar
  18. Hippe S, Düring K, Kreuzaler F (1989) In situ localization of a foreign protein in transgenic plants by immunoelectron microscopy following high pressure freezing, freeze substitution and low temperature embedding. Eur J Cell Biol 50:230–234Google Scholar
  19. Holbrook LA, Miki BL (1985) Brassica Crown gall tumourigenesis and in vitro transformed tissue. Plant Cell Rep 4:329–332Google Scholar
  20. Jourdan PS, Earle ED (1986) Influence of genotype on the regeneration of plants from seedling mesophyll protoplasts of three Brassica species. Crucifer genetics workshop II (Proceedings: 58), Univ Guelph, CanadaGoogle Scholar
  21. Kao HM, Seguin-Swarz G (1987) Study of factors affecting the culture of Brassica napus L. and B. juncea Coss. mesophyll protoplasts. Plant Cell Tissue Organ Cult 10:79–90Google Scholar
  22. Kartha KK, Michayluk MR, Kao KN, Gamborg OL, Constabel F (1974) Callus formation and plant regeneration from mesophyll protoplasts of rape plants (Brassica napus L. cv. Zephyr). Plant Sei Lett 3:265–271Google Scholar
  23. Kirti PB (1988) Somatic embryogenesis in hypocotyl protoplast culture of rapeseed (Brassica napus L.). Plant Breed 100:222–224Google Scholar
  24. Klimaszewska K, Keller WA (1985) High frequency plant regeneration from thin cell layer explants of Brassica napus. Plant Cell Tissue Organ Cult 4:183–197Google Scholar
  25. Klimaszewska K, Keller WA (1987) Plant regeneration from stem cortex protoplasts of Brassica napus. Plant Cell Tissue Organ Cult 8:225–233Google Scholar
  26. Kohlenbach HW, Wenzel G, Hoffmann F (1982) Regeneration of Brassica napus plantlets in cultures from isolated protoplasts of haploid stem embryos as compared with leaf protoplasts. Z Pflanzenphysiol 105:131–142Google Scholar
  27. Koncz C, Schell J (1986) The promotor of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:338–396Google Scholar
  28. Li L, Kohlenbach HW (1982) Somatic embryogenesis in quite a direct way in cultures of mesophyll protoplasts of Brassica napus L. Plant Cell Rep 1:209–211Google Scholar
  29. Lu DY, Pental D, Cocking EC (1982) Plant regeneration from seedling cotyledon protoplasts. Z Pflanzenphysiol 107:59–63Google Scholar
  30. Menczel L, Wolfe K (1984) High frequency of fusion induced in freely suspended protoplast mixtures by polyethylene glycol and dimethylsulfoxide at high pH. Plant Cell Rep 3:196–198Google Scholar
  31. Miki BL, Laabbe H, Hattori J, Ouellet T, Gabard J, Sunohara G, Charest PJ, Iyer YN (1990) Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor Appl Genet 80:449–458Google Scholar
  32. Misra S (1990) Transformation of Brassica napus L. with a disarmed octopine plasmid of Agrobacterium tumefaciens: molecular analysis and inheritance of the transformed phenotype. J Exp Bot 41:269–275Google Scholar
  33. Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168Google Scholar
  34. Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242Google Scholar
  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol plant 15:473–497Google Scholar
  36. Myhre S, Siegel K, Iversen TH (1985) The application of protoplasts and cell cultures in plant cell biology. Hereditas (Suppl) 3:148–149Google Scholar
  37. Neuhaus G, Spangenberg G, Mittelsten Scheid O, Schweiger HG (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor Appl Genet 75:30–36Google Scholar
  38. Ohlson M, Eriksson T (1988) Transformation of Brassica campestris protoplasts with Agrobacterium tumefaciens. Hereditas 108:173–177Google Scholar
  39. Ooms G, Brains A, Burreil M, Karp A, Twell D, Wilcox E (1985) Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium tumefaciens. Theor Appl Genet 71:325–329Google Scholar
  40. Pechan P (1989) Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep 8:387–390Google Scholar
  41. Pelletier G, Primard C, Yedel F, Chetrit P, Remy R, Rousselle, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:244–250Google Scholar
  42. Pua EC, Mehra-Palta A, Nagy F, Chua NH (1987) Transgenic plants of Brassica napus L. Bio/Technol 5:815–817Google Scholar
  43. Radke SE, Andrews BM, Moloney MM, Crouch ML, Kridl JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor Appl Genet 75:685–694Google Scholar
  44. RFF-Raps-Förderungs-Fonds (1986) Raps auf neuen Wegen. Mann, Gelsenkirchen-Buer, FRG, pp 10–13Google Scholar
  45. Schenck HR, Röbbelen G (1982) Somatic hybrids by fusion of protoplasts from Brassica oleracea and B. campestris. Z Pflanzenzücht 89:278–288Google Scholar
  46. Schweiger HG, Dirk J, Koop HU, Kranz E, Neuhaus G, Spangenberg G, Wolff D (1987) Individual selection, culture and manipulation of higher plant cells. Theor Appl Genet 73:769–783Google Scholar
  47. Simmonds DH, Long NE, Keller WA (1991) High plating efficiency and plant regeneration frequency in low density protoplast cultures derived from an embryogenic Brassica napus cell suspension. Plant Cell Tissue Organ Cult 27:231–241Google Scholar
  48. Stein U, Blaich R (1985) Untersuchungen über Stilbenproduktion und Botrytisanfälligkeit bei Vitis- Arten. Vitis 24:75–87Google Scholar
  49. Stringham GR (1977) Regeneration in stem explants of haploid rapeseed (Brassica napus L.). Plant Sei Lett 9:115–119CrossRefGoogle Scholar
  50. Swanson EB, Erickson LR (1989) Haploid transformation in Brassica napus using an octopineproducing strain of Agrobacterium tumefaciens. Theor Appl Genet 78:831–835Google Scholar
  51. Thomas E, Hoffmann F, Potrykus I, Wenzel G (1976) Protoplast regeneration and stem embryogenesis of haploid androgenetic rape. Mol Gen Genet 145:245–247CrossRefGoogle Scholar
  52. Thomzik JE, Hain R (1988) Transfer and segregation of triazine tolerant chloroplasts in Brassica napus L. Theor Appl Genet 76:165–171CrossRefGoogle Scholar
  53. Thomzik JE, Hain R (1990) Transgenic Brassica napus plants obtained by cocultivation of protoplasts with Agrobacterium tumefaciens. Plant Cell Rep 9:233–236CrossRefGoogle Scholar
  54. Xu ZH, Davey MR, Cocking EC (1982) Plant regeneration from root protoplasts of Brassica. Plant Sei Lett 24:117–121CrossRefGoogle Scholar
  55. Zambryski P, Joos H, Genetello C, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. E. Thomzik
    • 1
  1. 1.Bayer AG, Geschäftsbereich Pflanzenschutz, Entwicklung/BiotechnologiePflanzenschutzzentrum MonheimLeverkusenGermany

Personalised recommendations