Skip to main content

Chemical Structure Handling Using the Distributed Array Processor

  • Conference paper
  • 221 Accesses

Abstract

The Distributed Array Processor (DAP) is a parallel computer that allows the simultaneous processing of many thousands of data items. The massively parallel nature of the DAP is well suited to the processing of large databases and in this paper we describe its use for the clustering of files of 2-D structures using the Jarvis-Patrick clustering method, for the ranking of output in an experimental substructure searching system for the 3-D macromolecules in the Protein Data Bank, and for the implementation of atom-by-atom searching using Ullmann’s subgraph isomorphism algorithm. The experimental results demonstrate that the DAP is considerably faster than a conventional mainframe processor, although the precise degree of speed-up that can be obtained is strongly dependent upon the characteristics of the data that is to be processed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parallel Computers 2. Architecture, Programming and Algorithms ; Hockney, R.W.; Jesshope, C.R.; Adam Hilger: Bristol, 1988.

    Google Scholar 

  2. Computer Architecture and Parallel Processing ; Hwang, K.; Briggs, F.A.; McGraw-Hill: New York, 1984.

    Google Scholar 

  3. Designing Efficient Algorithms for Parallel Computers ; Quinn, M.J.; McGraw-Hill: New York, 1987.

    Google Scholar 

  4. Gostick, R.W. ‘Software and Algorithms for the Distributed Array Processor’. ICL Technical Journal 1979, 2, 116–135.

    Google Scholar 

  5. Gostick, R.W. ‘Software and Hardware Technology for the ICL Distributed Array Processor’. Australian Computer Journal 1981, 13, 1–6.

    Google Scholar 

  6. Parkinson, D. ‘The Distributed Array Processsor (DAP)’. Comput. Phys. Commun. 1983, 28, 325–336.

    Article  Google Scholar 

  7. Parallel Database Processing. Text Retrieval and Cluster Analysis Using the Distributed Array Processor, Willett, P.; Rasmussen, E.M.; Pitman: London, 1990.

    Google Scholar 

  8. Flynn, M.J. ‘Some Computer Organisations and Their Effectiveness’. IEEE Trans. Comput. 1972, C-21, 948–960.

    Article  Google Scholar 

  9. Carhart, R.E.; Smith, D.H.; Venkataraghavan, R. ‘Atom Pairs as Molecular Features in Structure-activity Studies: Definition and Applications’. J. Chem. Inf. Comput. Sci. 1985, 25, 64–73.

    Article  CAS  Google Scholar 

  10. Johnson, M.A. ‘A Review and Examination of the Mathematical Spaces Underlying Molecular Similarity Analysis’. J. Math. Chem. 1989, 3, 117–145.

    Article  CAS  Google Scholar 

  11. Similarity and Clustering in Chemical Information Systems ; Willett, P.; Research Studies Press: Letchworth, 1987.

    Google Scholar 

  12. Adamson, G.W.; Bush, J.A. ‘A Method for the Automatic Classification of Chemical Structures’. Inf. Storage Retr. 1973, 9 561–568.

    Article  CAS  Google Scholar 

  13. Willett, P.; Winterman, V.; Bawden, D. ‘Implementation of Nearest Neighbour Searching in an Online Chemical Structure System’. J. Chem. Inf. Comput. Sci. 1986, 26, 36–41.

    Article  CAS  Google Scholar 

  14. Willett, P.; Winterman, V.; Bawden, D. ‘Implementation of Non-hierarchic Cluster Analysis Methods in Chemical Information Systems: Selection of Compounds for Biological Testing and Clustering of Substructure Search Output’. J. Chem. Inf. Comput. Sci. 1986, 26, 109–118.

    Article  CAS  Google Scholar 

  15. Dubes, R.; Jain, A.K. ‘Clustering Methodologies in Exploratory Data Analysis’. Advances in Computers 1980, 19, 113–227.

    Article  Google Scholar 

  16. Multidimensional Clustering Algorithms; Murtagh, F.; Physica-Verlag: Vienna, 1985.

    Google Scholar 

  17. Salton, G.; Bergmark, D. ‘Parallel Computation in Information Retrieval’. Lecture Notes in Computer Science 1981, 111, 328–342.

    Article  Google Scholar 

  18. Jarvis, R.A.; Patrick, E.A. ‘Clustering Using a Similarity Measure Based On Shared Nearest Neighbours’. IEEE Trans. Comput. 1973, C-22, 1025–1034.

    Article  Google Scholar 

  19. Rasmussen, E.M.; Downs, G.M.; Willett, P. ‘Automatic Classification of Chemical Structure Databases Using a Highly Parallel Array Processor’. J. Comput. Chem. 1988, 9, 378–386.

    Article  CAS  Google Scholar 

  20. Communication, Storage and Retrieval of Chemical Information; Ash, J.E.; Chubb, P.A.; Ward, S.E.; Welford, S.M.; Willett, P., Eds; Ellis Horwood: Chicester, 1985.

    Google Scholar 

  21. Rasmussen, E.M. Cluster Analysis on a Highly Parallel Array Processor. Ph.D. Thesis, University of Sheffield, 1988.

    Google Scholar 

  22. Noreault, T.; Koll, M.; McGill, M.J. ‘Automatic Ranked Output from Boolean Searches in SIRE’. J. Am. Soc. Inf. Sci. 1977, 28, 333–339.

    Article  Google Scholar 

  23. Dittmar, P.G.; Farmer, N.A.; Fisanick, W.; Haines, R.C.; Mockus, J. ‘The CAS ONLINE Search System. Part I. General Design and Selection, Generation and Use of Search Screens’. J. Chem. Inf. Comput. Sci. 1983, 23, 93–102.

    Article  CAS  Google Scholar 

  24. Parkinson, D.; Liddell, H.M. ‘The Measurement of Performance on a Highly Parallel System’. IEEE Trans. Comput. 1983, C-32, 32–37.

    Article  Google Scholar 

  25. Artymiuk, P.J.; Grindley, H.M.; Mitchell, E.M.; Rice, D.W.; Ujah, E.C.; Willett, P. ‘Representation and Searching of 3-D Protein Structures’. In these Proceedings.

    Google Scholar 

  26. Wilson, T. Implementation of Graph-matching Techniques in Chemical Databases Using a Single Instruction Stream, Multiple Data Stream Array Processor Ph.D. thesis, University of Sheffield, 1991.

    Google Scholar 

  27. Ullmann, J.R. ‘An Algorithm for Subgraph Isomorphism’. J. Assoc. Comput. Mach. 1976, 16, 31–42.

    Google Scholar 

  28. Brint, A.T.; Willett, P. ‘Pharmacophore Pattern Matching in Files of 3-D Chemical Structures: Comparison of Geometric Searching Algorithms’. J. Mol. Graphics 1987, 5, 49–56.

    Article  CAS  Google Scholar 

  29. Downs, G.M.; Lynch, M.F.; Manson, G.A.; Willett, P.; Wilson, G.A. ‘Transputer Implementation of Chemical Substructure Searching Algorithms’. Tetrahedron Comput. Methodol. 1988, 1, 208–217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rasmussen, E.M., Willett, P., Wilson, T. (1993). Chemical Structure Handling Using the Distributed Array Processor. In: Warr, W.A. (eds) Chemical Structures 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78027-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78027-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78029-5

  • Online ISBN: 978-3-642-78027-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics