The Transport Phloem. Specifics of its Functioning

  • Aart J. E. van Bel
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 54)


Translocation of photoassimilates from the source leaves to the heterotrophic parts of the plant demands three different functions executed by the phloem system. The photosynthate is collected in the source leaves (phloem loading), translocated from source to sink (phloem transport), and delivered in the sink tissues (phloem unloading). It is expected that anatomy and physiology of the particular phloem sections reflect the specific tasks to be carried out. Investigations over the past 10 years revealed a diversity of anatomical settings in sources and sinks which seem to correspond with a multiplicity of mechanisms. Several reviews and opinion papers were recently devoted to the phloem sections engaged in loading (Delrot 1987; Van Bel 1987, 1989, 1992; Gamalei 1989, 1990, 1991; Turgeon 1989; Turgeon and Beebe 1991; Van Bel and Gamalei 1991) and unloading (Murray 1987; Turgeon 1989; Patrick 1990; Oparka 1990; Wolswinkel 1990). The functioning of the transport phloem has gained much less attention, although some silent conceptual progress has been made over the past decade. Only aspects such as the photosynthate unloading from the transport phloem (Patrick 1990) and the relation between transport phloem and solute transfer through rays (Van Bel 1990) have been reviewed recently.


Sugar Sucrose Starch Carbohydrate Expense 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aloni B, Wyse RE, Griffith S (1986) Plant Physiol 81: 482–486.PubMedCrossRefGoogle Scholar
  2. Behnke HD (1989) In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman, Harlow, pp 79–137.Google Scholar
  3. Canny MJ (1973) Phloem translocation. University Press, Cambridge.Google Scholar
  4. Côté R, Thain JF, Fensom DS (1987) Can J Bot 65: 509–511.CrossRefGoogle Scholar
  5. Cronshaw J (1980) Ber Dtsch Bot Ges 93: 123–139.Google Scholar
  6. Dale J (1987a) Planta 171: 474–482.CrossRefGoogle Scholar
  7. Daie J (1987b) Plant Physiol 84: 1033–1037.PubMedCrossRefGoogle Scholar
  8. Davies E (1987) Plant Cell Environm 10: 623–631.CrossRefGoogle Scholar
  9. Davis JM, Gordon MP, Smit BA (1991) Proc Natl Acad Sci USA 88: 2393–2396.PubMedCrossRefGoogle Scholar
  10. Delrot S (1987) Plant Physiol Biochem 25: 667–676.Google Scholar
  11. Eleftheriou EP (1990) In: Behnke HD, Sjolund RD (eds) Sieve elements. Springer, Berlin Heidel­berg New York, pp 103–137.Google Scholar
  12. Erwee MG, Goodwin PB (1985) Planta 163: 9–19.CrossRefGoogle Scholar
  13. Eschrich W (1983) Planta 157: 540–547.CrossRefGoogle Scholar
  14. Eschrich W, Evert RF, Young JH (1972) Planta 107: 279–300.CrossRefGoogle Scholar
  15. Eschrich W, Fromm J, Evert RF (1988) Bot Acta 101: 327–331.Google Scholar
  16. Evert RF (1984) In: White RA, Dickison W (eds) Contemporary problems in plant anatomy. Academic Press, Orlando, pp 145–234.Google Scholar
  17. Evert RF (1990) In: Behnke HD, Sjolund RD (eds) Sieve elements. Springer, Berlin Heidelberg New York, pp 103–137.CrossRefGoogle Scholar
  18. Evert RF, Mierzwa RJ, Eschrich W (1988) Protoplasma 146: 41–51.CrossRefGoogle Scholar
  19. Faucher M, Bonnemain JL, Doffin M (1982) Physiol Veg 20: 395–405.Google Scholar
  20. Fensom DS (1981) Can J Bot 59: 425–432.CrossRefGoogle Scholar
  21. Fisher DB (1978) Planta 139: 19–24.CrossRefGoogle Scholar
  22. Fromm J, Eschrich W (1988a) Trees 2: 7–17.Google Scholar
  23. Fromm J, Eschrich W (1988b) Trees 2: 18–34.Google Scholar
  24. Gamalei YV (1985) Fiziol Rast 32: 866–875.Google Scholar
  25. Gamalei YV (1989) Trees 3: 96–110.CrossRefGoogle Scholar
  26. Gamalei YV (1990) Leaf phloem. Nauka, Leningrad (in Russian).Google Scholar
  27. Gamalei YV (1991) Trees 5: 50–63.CrossRefGoogle Scholar
  28. Giaquinta RT (1983) Annu Rev Plant Physiol 34: 347–387.CrossRefGoogle Scholar
  29. Goeschl JD, Magnuson CE (1986) Plant Cell Environ 9: 95–102.CrossRefGoogle Scholar
  30. Grimm E, Gemot B, Rothe K, Jacob F (1990) Planta 182: 480–485.CrossRefGoogle Scholar
  31. Hayes PM, Patrick JW (1985) Planta 166: 371–379.CrossRefGoogle Scholar
  32. Hayes PM, Offler CE, Patrick JW (1985) Ann Bot 56: 125–138.Google Scholar
  33. Hayes PM, Patrick JW, Offler CE (1987) Ann Bot 59: 635–642.Google Scholar
  34. Hoad GV (1980) Planta 150: 275–278.CrossRefGoogle Scholar
  35. Horwitz L (1985) Plant Physiol 33: 81–93.CrossRefGoogle Scholar
  36. Jahnke S, Schlesinger U, Knust EJ (1992) Physiol Plant 85: A19.Google Scholar
  37. Lang A (1978) Aust J Plant Physiol 5: 665–674.CrossRefGoogle Scholar
  38. Lang A (1979) Ann Bot 44: 141–145.Google Scholar
  39. Lang A, Thorpe MR (1986) J Exp Bot 37: 495–503.CrossRefGoogle Scholar
  40. Lang A, Thorpe MR (1989) J Exp Bot 40: 1069–1078.CrossRefGoogle Scholar
  41. Lehmann J (1979) Z Pflanzenphysiol 94: 331–338.Google Scholar
  42. Magnuson CE, Goeschl JD, Fares Y (1986) Plant Cell Environ 9: 103–109.CrossRefGoogle Scholar
  43. Minchin PEH, Thorpe MR (1984) J Exp Bot 35: 538–550.CrossRefGoogle Scholar
  44. Minchin PEH, Ryan KG, Thorpe MR (1984) J Exp Bot 35: 1744–1753.CrossRefGoogle Scholar
  45. Minchin PEH, J Exp Bot 13S:11. Murphy R, Aikman D (1989) J Exp Bot 40: 1079–1088.Google Scholar
  46. Murray DR (1987) Am J Bot 74: 1122–1137.CrossRefGoogle Scholar
  47. Offler CE, Patrick JW (1984) Aust J Plant Physiol 11: 79–99.CrossRefGoogle Scholar
  48. Oparka KJ (1990) Plant Physiol 94: 393–396.PubMedCrossRefGoogle Scholar
  49. Oparka KJ, Viola R, Wright KM, Prior DAM (1992) In: Farrar JF, Gordon AJ, Pol­lock CJ (eds) Carbon partitioning within and between organisms. BIOS, Oxford, pp 91–114.Google Scholar
  50. Oparka KJ, Prior DAM (1992) Plant J 2: 741–750.CrossRefGoogle Scholar
  51. Opritov VA, Pyatygin SS (1989) Biochem Physiol Pflanz 184: 447–451.Google Scholar
  52. Overall RL, Gunning BES (1982) Protoplasma 111: 151–160.CrossRefGoogle Scholar
  53. Patrick JW (1990) Physiol Plant 78: 298–308.CrossRefGoogle Scholar
  54. Patrick JW, Turvey PM (1981) Ann Bot 47: 611–621.Google Scholar
  55. Peel AJ (1987) Planta 172: 209–213.CrossRefGoogle Scholar
  56. Pesacreta TC, Lucas WJ (1986) In: Cronshaw J, Lucas WJ, Giaquinta RT (eds) Phloem transport. Liss, New York, pp 135–144.Google Scholar
  57. Poorter H, Remkes C, Lambers H (1990) Plant Physiol 94: 621–627.PubMedCrossRefGoogle Scholar
  58. Sauter JJ, Kloth S (1986) Planta 168: 377–380.CrossRefGoogle Scholar
  59. Sibaoka T (1962) Science 137: 226.PubMedCrossRefGoogle Scholar
  60. Sjolund RD, Shih CY (1983a) J Ultrastruct Res 82: 111–121.PubMedCrossRefGoogle Scholar
  61. Sjolund RD, Shih CY (1983b) J Ultrastruct Res 82: 189–197.PubMedCrossRefGoogle Scholar
  62. Smith JAC, Milbum JA (1980a) Planta 148: 28–34.CrossRefGoogle Scholar
  63. Smith JAC, Milburn JA (1980b) Planta 148: 42–48.CrossRefGoogle Scholar
  64. Sokolova SV, Krasavina MS, Lushchikov SB (1979) Fiziol Rast 26: 721–727.Google Scholar
  65. Turgeon R (1989) Annu Rev Plant Physiol Plant Mol Biol 40: 119–138.CrossRefGoogle Scholar
  66. Turgeon R (1991) In: Bonnemain JL, Delrot S, Lucas WJ, Dainty J (eds) Recent advances in phloem transport and as­similate compartmentation. Ouest Editions, Nantes, pp 18–22.Google Scholar
  67. Turgeon R, Beebe DU (1991) Plant Physiol 96: 349–354.PubMedCrossRefGoogle Scholar
  68. Van Bel AJE (1987) Plant Physiol Biochem 25: 677–686.Google Scholar
  69. Van Bel AJE (1989) Bot Acta 102: 183–185.Google Scholar
  70. Van Bel AJE (1990) J Exp Bot 41: 631–644.CrossRefGoogle Scholar
  71. Van Bel AJE (1992) Acta Bot Neerl 41: 121–141.Google Scholar
  72. Van Bel AJE, Kempers R (1991) Planta 183: 69–76.CrossRefGoogle Scholar
  73. Van Bel AJE, Koops AJ (1985) Planta 164: 362–369.CrossRefGoogle Scholar
  74. Van Bel AJE, Van Rijen H (1992) J Exp Bot 43S: 15.CrossRefGoogle Scholar
  75. Van Bel AJE, Visser AJ (1993) In: Gamier E, Roy J (eds) Carbonnitrogen interactions: a whole plant perspective. SPB Academic Publishing, The Hague (in press).Google Scholar
  76. Van Bel AJE, Van Kesteren WJP, Papenhuijzen C (1988) Planta 176: 159–172.CrossRefGoogle Scholar
  77. Van Bel AJE, Gamalei YV, Ammerlaan A, Bik LPM (1992) Planta 186: 518–525.CrossRefGoogle Scholar
  78. Van der Schoot C, Van Bel AJE (1989) Protoplasma 149: 144–154.CrossRefGoogle Scholar
  79. Van der School C, Van Bel AJE (1990) Planta 182: 9–21.Google Scholar
  80. Vreugdenhil D (1985) Planta 163: 238–340.CrossRefGoogle Scholar
  81. Vreugdenhil D, Koot-Gronsveld EAM (1989) Physiol Plant 77: 385–388.CrossRefGoogle Scholar
  82. Warmbrodt RD (1985) Bot Gaz 146: 169–180.CrossRefGoogle Scholar
  83. Wolswinkel P (1990) Plant Physiol Biochem 28: 399–410.Google Scholar
  84. Wolswinkel P, Ammerlaan A (1983) J Exp Bot 34: 1516–1527.CrossRefGoogle Scholar
  85. Wright JP, Fisher DB (1981) Plant Physiol 67: 845–848.PubMedCrossRefGoogle Scholar
  86. Zahur MS (1959) Cornell Univ Ag Exp Mem 358.Google Scholar
  87. Zawadzki T, Fensom DS (1986) J Exp Bot 37: 1353–1363.CrossRefGoogle Scholar
  88. Ziegler H (1990) In: Werner D, Müller P (eds) Fast growing trees and nitrogen fixing trees. Gustav Fischer, Stuttgart, pp 162–170.Google Scholar
  89. Zimmermann MH, Ziegler H (1975) In: Zim­mermann MH, Milburn JA (eds) Encyclopedia of plant physiology. Transport in plants I. Springer, Berlin Heidelberg New York, pp 480–496.Google Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Aart J. E. van Bel
    • 1
  1. 1.Transport Physiology Research Group Department of Plant Ecology and Evolutionary BiologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations