Advertisement

Function of the Genetic Material: Transposable Elements in Lower Eukaryotes

  • Michael Ciriacy
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 54)

Abstract

In the past 10 years increasing evidence has been provided that eukaryotic genomes are inhabited by a variety of mobile genetic elements. The occurrence of such elements in forms of plasmids or transposons has changed our view of the eukaryotic genome in terms of its stability and its evolutionary origins quite considerably. Even though our knowledge of the spectrum of mobile elements and their occurrence in the various taxa is still limited, there is now sufficient information available on their molecular nature, their replication strategies, and their cellular function to outline some common and general features. This review will be focused on lower eukaryotes such as yeast, fungi, slime molds, and algae. Research on this group of organisms has contributed, although to a quite different degree, very much to our current knowledge on the nature of eukaryotic mobile elements. Furthermore, I will restrict this review to mobile sequences which interact physically in some way with the nuclear or extranuclear genomes. Thus, the reader is referred to the comprehensive treatise by (Berg and Howe 1989) which covers the entire field of “mobile DNA”. The presentation of material in this review is not only biased by my own research interests, but also by extreme variability in knowledge in the various systems investigated. Starting with an overview of transposons in lower eukaryotes and their possible relationship to each other and to other entities of cellular life, I will discuss the major strategies for expression of genetic information carried by transposons and for replication of the genome.

Keywords

Transposable Element Slime Mold Reverse Transcriptase Activity Lower Eukaryote Organellar Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams SE, Dawson KM, Kingsman SM, Kingsman AJ (1987) Nature 329: 68–70.PubMedCrossRefGoogle Scholar
  2. Akins RA, Kelley RL, Lambowitz AM (1986) Cell 47: 505–516.PubMedCrossRefGoogle Scholar
  3. Akins RA, Grant DM, Stohl LL, Bottorff DA, Nargang FE, Lambowitz AM (1988) J Mol Biol 204: 1–25.PubMedCrossRefGoogle Scholar
  4. Beicourt MF, Farabaugh PJ (1990) Cell 62: 339–352.CrossRefGoogle Scholar
  5. Berg DE, Howe MM (1989) Mobile DNA. American Society of Microbiology, Washington, DC, pp 1–972.Google Scholar
  6. Boeke JD, Corces VG (1989) Annu Rev Microbiol 43: 403–434.PubMedCrossRefGoogle Scholar
  7. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Cell 40: 491–500.PubMedCrossRefGoogle Scholar
  8. Brown PO, Bowermann B, Varmus HE, Bishop JM (1987) Cell 49: 347–356.PubMedCrossRefGoogle Scholar
  9. Brühl KG (1991) PhD Thesis, Heinrich-Heine-Universität,Google Scholar
  10. Düsseldorf. Burns NR, Saibil HR, White NS, Pardon JF, Timmins PA, Richardson SMH, Richards BM, Adams SE, Kingsman SM, Kingsman AJ (1992) EMBO J 11: 1155–1164.PubMedGoogle Scholar
  11. Cameron JR, Loh LY, Davis RW (1979) Cell 16: 739–751.PubMedCrossRefGoogle Scholar
  12. Chalker DL, Sandmeyer SB (1992) Genes Dev 6: 117–128.PubMedCrossRefGoogle Scholar
  13. Chapman KB, Boeke JD (1991) Cell 65: 483–492.PubMedCrossRefGoogle Scholar
  14. Ciriacy M, Williamson VM (1981) Mol Gen Genet 182: 159–163.PubMedCrossRefGoogle Scholar
  15. Ciriacy M, Freidel K, Löhning C (1991) Curr Genet 20: 441–448.PubMedCrossRefGoogle Scholar
  16. Clare J, Farabaugh PJ (1985) Proc Natl Acad Sci USA 82: 2829–2833.PubMedCrossRefGoogle Scholar
  17. Clare JJ, Belcourt M, Farabaugh PJ (1988) Proc Natl Acad Sci USA 85: 6816–6820.PubMedCrossRefGoogle Scholar
  18. Company M, Adler C, Errede B (1988) Mol Cell Biol 8: 2545–2554.PubMedGoogle Scholar
  19. Day A, Rochaix JD (1991) Nucleic Acids Res 19: 1259–1266.PubMedCrossRefGoogle Scholar
  20. Doolittle RF, Feng DF, Johnson MS, McClure MA (1989) Q Rev Biol 64: 1–30.PubMedCrossRefGoogle Scholar
  21. Eichinger DJ, Boeke JD (1988) Cell 54: 955–966.PubMedCrossRefGoogle Scholar
  22. Eichinger DJ, Boeke JD (1990) Genes Dev 4: 324–330.PubMedCrossRefGoogle Scholar
  23. Errede B, Cardillo TS, Wever B, Sherman F (1980) Cold Spring Harbor Symp Quant Biol 45: 593–602.CrossRefGoogle Scholar
  24. Errede B, Company M, Hutchinson CA (1987) Mol Cell Biol 7: 258–265.PubMedGoogle Scholar
  25. Farabaugh PJ, Fink GR (1980) Nature 286: 352–356.PubMedCrossRefGoogle Scholar
  26. Farabaugh P, Liao X-B, Belcourt M, Zhao H, Kapakos J, Clare J (1989) Mol Cell Biol 9: 4824–4834.PubMedGoogle Scholar
  27. Fulton AM, Rathjen PD, Kingsman SM, Kingsman AJ (1988) Nucleic Acid Res 16: 5439–5458.PubMedCrossRefGoogle Scholar
  28. Gabriel A, Yen TJ, Schwartz DC, Smith CL, Boeke JD, Sollner-Webb B, Cleveland DW (1990) Mol Cell Biol 10: 615–624.PubMedGoogle Scholar
  29. Gafner J, Philippsen P (1980) Nature 286: 414–418.PubMedCrossRefGoogle Scholar
  30. Garfinkel DJ, Boeke JD, Fink GR (1985) Cell 42: 507–517.PubMedCrossRefGoogle Scholar
  31. Garfinkel DJ, Hedge A-M, Youngren SD, Copeland TD (1991) J Virol 65: 4573–4581.PubMedGoogle Scholar
  32. Grandbastien M-A (1992) TIG 8: 103–108.PubMedGoogle Scholar
  33. Happel AM, Swanson MS, Winston F (1991) Genetics 128: 69–77.PubMedGoogle Scholar
  34. Hofmann J, Schumann G, Borschet G, Gosseringer R, Bach M, Bertling WM, Marschalek R, Dingermann T (1991) J Mol Biol 222: 537–552.PubMedCrossRefGoogle Scholar
  35. Inouye M, Inouye S (1991) TffiS 16: 18–21Google Scholar
  36. Kinsey JA, Helber J (1989) Proc Natl Acad Sci USA 86: 1929–1933.PubMedCrossRefGoogle Scholar
  37. Kuiper MT, Lambowitz AM (1988) Cell 55: 693–704.PubMedCrossRefGoogle Scholar
  38. Kück U (1989) Mol Gen Genet 218: 257–265.PubMedCrossRefGoogle Scholar
  39. Lambowitz AM (1989) Cell 56: 323–326.PubMedCrossRefGoogle Scholar
  40. Levin HL, Boeke JD (1992) EMBO J 11: 1145–1153.PubMedGoogle Scholar
  41. Levin HL, Weaver DC, Boeke JD (1990) Mol Cell Biol 10: 6791–6798.PubMedGoogle Scholar
  42. Marschalek R, Hofmann J, Schumann G, Gosseringer R, Dingermann T (1992) Mol Cell Biol 12: 229–239.PubMedGoogle Scholar
  43. McHale MT, Roberts IN, Noble SM, Beaumont C, Whitehead MP, Seth D, Oliver RP (1992) Mol Gen Genet 233: 337–347.PubMedCrossRefGoogle Scholar
  44. Michel F, Lang BF (1985) Nature 316: 641–643.PubMedCrossRefGoogle Scholar
  45. Mount SM, Rubin GM (1985) Mol Cell Biol 5: 1630–1638.PubMedGoogle Scholar
  46. Müller F, Brühl KH, Freidel K, Kowallik KV, Ciriacy M (1987) Mol Gen Genet 207: 421–429.PubMedCrossRefGoogle Scholar
  47. Müller F, Laufer W, Pott U, Ciriacy M (1991) Mol Gen Genet 226: 145–153.PubMedCrossRefGoogle Scholar
  48. Osiewacz HD (1990) Mutat Res 237: 1–8.PubMedGoogle Scholar
  49. Osiewacz HD, Esser K (1984) Curr Genet 8: 299–305.CrossRefGoogle Scholar
  50. Rothnie HM, McCurrach KJ, Glover LA, Hardman N (1991) Nucleic Acids Res 19: 279–286.PubMedCrossRefGoogle Scholar
  51. Sandmeyer SB, Hansen U, Chalker DL (1990) Annu Rev Genet 24: 491–518.PubMedCrossRefGoogle Scholar
  52. Williamson VM, Young ET, Ciriacy M (1981) Cell 23: 605–614.PubMedCrossRefGoogle Scholar
  53. Xiong Y, Eickbusch TH (1990) EMBO J 9: 3353–3362.PubMedGoogle Scholar
  54. Youngren SD, Boeke JD, Sanders NJ, Garfinkel DJ (1988) Mol Cell Biol 8: 1421–1431.PubMedGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Michael Ciriacy
    • 1
  1. 1.Institut für MikrobiologieHeinrich-Heine-UniversitätDüsseldorf 1Germany

Personalised recommendations