Skip to main content

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 54))

Abstract

The recognition and establishment of a new distinctive phylogenetically coherent group of organisms, the archaebacteria, have changed our perception of the phylogenetic structure of the living world. This review will deal largely with the “discovery” of archaebacteria, their establishment as the domain Archaea, a newly defined taxon of highest rank, the description of their characteristics, and the biotechnological and evolutionary implications of archaeal research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar A (1989) In: da Costa MS et al. (eds) Microbiology of extreme environments and its potential for biotechnology: European laboratories without walls on extremophiles. Elsevier, Lindon, pp 1–5.

    Google Scholar 

  • Aguilar A (1992) In: Geirsdottir AM, Brown HP, Sjenstad T (eds) Abstract book. International conference thermophiles: science and technolgy. IceTec Reykjavik, Iceland, p 2.

    Google Scholar 

  • Auer J, Lechner K, Böck A (1989) Can J Microbiol 35: 200–204.

    PubMed  CAS  Google Scholar 

  • Auer J, Spicker G, Böck A (1990) Syst Appi Microbiol 13: 354–360.

    CAS  Google Scholar 

  • Auer J, Spicker G, Mayerhofer L et al. (1991) Syst Appi Microbiol 14: 14–22.

    CAS  Google Scholar 

  • Balch WE, Magrum LJ, Fox GE et al. (1977) J Mol Evol 9: 305–311.

    PubMed  CAS  Google Scholar 

  • Baumeister W, Wildhaber I, Phipps BM (1989) Can J Microbiol 35: 215–227.

    PubMed  CAS  Google Scholar 

  • Baumeister W, Santarius U, Volker S et al. (1990) Syst Appi Microbiol 13: 105–111.

    CAS  Google Scholar 

  • Belay N, Daniels L (1987) Appi Environ Microbiol 53: 1604–1610.

    CAS  Google Scholar 

  • Belay N, Daniels L (1988) Antonie van Leeuwenhoek J Microbiol 54: 113–125.

    PubMed  CAS  Google Scholar 

  • Bengtson S (ed) (1993) Early life on earth. Proceedings of Nobel Symposium ’84, Columbia Univ Press, New York.

    Google Scholar 

  • Blöchl E, Keller M, Wächtershäuser G et al. (1992) Proc Natl Acad Sci USA 89: 8117–8120.

    PubMed  Google Scholar 

  • Bos P, Kuenen JG (1990) In: Brock TD (ed) Thermophiles: general, molecular, and applied microbiology. Wiley New York, pp 279–305.

    Google Scholar 

  • Brauchte C, Hampp N, Oesterhelt D (1991) Adv Mater 3: 420–428.

    Google Scholar 

  • Brierley JA, Brierley CL (1986) In: Brock TD (ed) Thermophiles: general molecular and applied microbiology. Wiley, New York, pp 279–305.

    Google Scholar 

  • Brock TD (1978) Starr MP (ed) Thermophilic microorganisms and life at high temperatures. Springer, New York Heidelberg Berlin, pp 1–465.

    Google Scholar 

  • Burggraf S, Stetter KO, Rouviere P et al. (1991) Syst Appi Microbiol 14: 346–351.

    CAS  Google Scholar 

  • Chang S, Des Marais D, Mack R et al. (1983) In: Schopf JW (ed) Earth’ earliest biosphereits origin and evolution. Princeton Univ Press, Princeton.

    Google Scholar 

  • Chatton E (1937) Titre et travaux scientifiques. Sottana Italie, Séte.

    Google Scholar 

  • Comita PB, Gagosian RB (1983) Science 222: 1329–1331.

    PubMed  CAS  Google Scholar 

  • Cowan DA (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 149–169.

    Google Scholar 

  • Daniels L (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 181–193.

    Google Scholar 

  • Danson MJ (1989) Can J Microbiol 35: 58–64.

    PubMed  CAS  Google Scholar 

  • Danson MJ, Hough DW (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 7–22.

    Google Scholar 

  • Danson MJ, Hough DW, Lunt GG (eds) (1992) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 1–212.

    Google Scholar 

  • De Lange R, Williams L (1981) J Biol Chem 256: 905–911.

    Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B et al. (1982) J Gen Microbiol 128: 343–348.

    Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B et al. (1983) J Gen Microbiol 129: 2333–2337.

    Google Scholar 

  • DiMarco AA, Bobi TA, Wolfe RS (1990) Annu Rev Biochem 59: 355–394.

    Google Scholar 

  • Drobner E, Huber H, Wächtershäuser G et al. (1990) Nature 346: 742–744.

    CAS  Google Scholar 

  • Edmonds ChG, Crain PF, Gupta R et al. (1991) J Bacterid 173: 3138–3148.

    CAS  Google Scholar 

  • Forterre P, Charbonnier F, Marguet E et al. (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 99–112.

    Google Scholar 

  • Fuchs G, Ecker A, Strauss G (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 29–39.

    Google Scholar 

  • Genthner BRS, Price WA H, Pritchard PH (1989) Appi Environ Microbiol 55: 1466–1471.

    CAS  Google Scholar 

  • Gogarten JP, Taiz L (1992) In: Hartmann H (ed) Origin of life. Neil Patterson Publishers.

    Google Scholar 

  • Gogarten JP, Kibak H, Dittrich P et al. (1989) Proc Natl Acad Sci USA 86: 6661–6665.

    PubMed  CAS  Google Scholar 

  • Hampp N, Thoma R, Bräuchle C et al. (1992) AIP Conf Proc 262 (Mol Electron Sci Technol): 181–190.

    CAS  Google Scholar 

  • Hartmann E, König H (1990) Naturwissenschaften 77: 472–475.

    PubMed  CAS  Google Scholar 

  • Hartmann E, König H (1991) Biol Chem Hoppe-Seyler 372: 971–974.

    PubMed  CAS  Google Scholar 

  • Holst O, Larsson L, Olsson G et al. (1992a) In: Geirsdóttir AM, Brown HP, Sjenstad T (eds) Abstract book. International conference thermophiles: science and technology. IceTec Reykjavik, Iceland, pp 143–146.

    Google Scholar 

  • Holst O, Larson L, Olsson G et al. (1992b) In: Geirsdóttir AM, Brown HP, Sjenstad T (eds) Abstract book. International conference thermophiles: science and technology. IceTec Reykjavik, Iceland, p 113.

    Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M et al. (1989) Proc Natl Acad Sci USA 86: 9355–9359.

    PubMed  CAS  Google Scholar 

  • Jones BE (1992) In: Geirsdóttir AM, Brown HP, Sjenstad T (eds) Abstract book International Conference Thermophiles: Science and Technology. IceTec Reykjavik Iceland, p 114.

    Google Scholar 

  • Kamekura M, Seno Y (1991) In: Rodriguez-Valera F (ed) General and Applied Aspects of Halophilic Microorganisms. Plenum Press New York, pp 305–365.

    Google Scholar 

  • Kandier O (ed) (1982a) Archaebacteria. Gustav Fischer, Stuttgart, pp 1–366.

    Google Scholar 

  • Kandier O (1982b) Zentralbl Bakteriol Hyg I Abt Orig C 3: 149–160.

    Google Scholar 

  • Kandier O (1985) In: Proceedings Third European Congress on Biotechnology, vol IV.VCH, Weinheim, pp 551–560.

    Google Scholar 

  • Kandier O (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 195–207.

    Google Scholar 

  • Kandier O (1993) In: Bengtson S (ed) Early life on earth. Proceedings of Nobel Symposium ’84. Columbia Univ Press (in press).

    Google Scholar 

  • Kandier O, König H (1985) In: Woese CR, Wolfe RS (eds) The bacteria, vol VIII. Archaebacteria. Academic Press, Orlando, pp 413–452.

    Google Scholar 

  • Kandier O, König H (1993) In: Kates M, Kushner DJ, Matheson AT (eds) The biochemistry of Archaea (archaebacteria). Elsevier, Amsterdam (in press).

    Google Scholar 

  • Kandier O, Stetter KO (1981) Zentralbl Bakteriol Hyg I Abt Orig C 2: 111–121.

    Google Scholar 

  • Kandier O, Zillig W (eds) (1986) Archaebacteria ’85. Gustav Fischer, Stuttgart, pp 432.

    Google Scholar 

  • Kates M (1988) In: Kamovsky ML, Leaf A, Bolis LC (eds) Biological membranes: aberrations in membrane structure and function; structure, physical properties and function of archaebacterial lipids. Alan Liss, New York, pp 357–384.

    Google Scholar 

  • Kates M (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 51–72.

    Google Scholar 

  • Kibak H, Taiz L, Stoke T, Bernasconi P, Gogarten JP (1992) J Bioenerg Biomembr 24: 415–424.

    PubMed  CAS  Google Scholar 

  • Kjems J, Larsen N, Dalgaard JZ et al. (1992) Syst Appi Microbiol 15: 203–208.

    Google Scholar 

  • König H, Stetter KO (1989): In: Staley JT, Bryant MP, Pfennig N (eds) Bergey’s manual of systematic bacteriology, vol 13. William & Wilkins, Baltimore, pp 2171–2253.

    Google Scholar 

  • Kreisl P, Kandier O (1986) Syst Appi Microbiol 7: 293–299.

    CAS  Google Scholar 

  • Kurr M, Huber R, König H et al. (1991) Arch Microbiol 156: 239–247.

    CAS  Google Scholar 

  • Laine B, Chartier F, Imbert B et al. (1990) In: Beiaich JP, Bruschi M, Garcia JL (eds) FEMS Symp. Plenum Press, New York, pp 291–301.

    Google Scholar 

  • Langworthy TA, (1985) In: Woese CR, Wolfe RS (eds) The bacteria vol VIII. Archaebacteria. Academic Press, Orlando, pp 459–497.

    Google Scholar 

  • Lechner J, Wieland F (1989) Annu Rev Biochem 48: 173–194.

    Google Scholar 

  • Legoy MD (1992) In: Geirsdóttir AM, Brown HP, Sjenstad T (eds) Abstract book. International conference thermophiles: science and technology. IceTec Reykjavik, Iceland, p 116A.

    Google Scholar 

  • Le Roux NW, Wakerley DS (1988) In: Norris PR, Kelle DP (eds) Biohydrometall. Proc Int Symp, Science and Technology Letter Kew, pp 305–317.

    Google Scholar 

  • Lodwick D, Ross HNM, Walker JA et al. (1991) Syst Appi Microbiol 14: 352–357.

    CAS  Google Scholar 

  • Lucchese G, Scolla G, Morana A (1992) In: Geirsdóttir AM, Brown HP, Sjenstad T (eds) Abstract book. International conference thermophiles: science and technology. IceTec Rejkjavik, Iceland, p 68.

    Google Scholar 

  • Lundberg KS, Shoemaker DD, Adams MWW et al. (1991) Gene 108: 1–6.

    PubMed  CAS  Google Scholar 

  • Magnien E (ed)(1986) Biomolecular engineering in the European Community. Martinus Nijhoff Publishers for the CEC Brussels, The Hague.

    Google Scholar 

  • Magnien E, Aguilar A, Wragg P et al. (1989) Biofuture 84: 17–30.

    Google Scholar 

  • Matheson AT (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria. biochemistry and biotechnology. Portland Press, London, pp 89–98.

    Google Scholar 

  • Mazumder TK, Nishio TK, Fukuzaki N et al. (1987) Appi Microbiol Biotechnol 26: 511–516.

    CAS  Google Scholar 

  • McCloskey JA (1986) Syst Appi Microbiol 7: 246–252.

    CAS  Google Scholar 

  • Miller SL, Urey HC (1959) Science 130: 245–251.

    PubMed  CAS  Google Scholar 

  • Miyata T, Iwabe N, Kuma K et al. (1991) In: Osawa S, Honjo T (eds) Evolution of life. Springer, Berlin Heidelberg New York, pp 337–351.

    Google Scholar 

  • Moldoveanu N, Kates M, Monter CG et al. (1990) Biochem Biophys Acta 1046: 127–135.

    PubMed  CAS  Google Scholar 

  • Mukund S, Adams MWW (1991) J Biol Chem 266: 14208–14216.

    PubMed  CAS  Google Scholar 

  • Mullis K, Falcona F, Saiki R et al. (1986) Quant Biol 51: 263–273.

    CAS  Google Scholar 

  • Norris PR (1990) In: Ehrlich HL, Brierley CI (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 3–27.

    Google Scholar 

  • Norris PR (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 171–180.

    Google Scholar 

  • Oesterhelt D, Krippahl G (1983) Ann Microbiol (Paris) 134B: 137–150.

    Google Scholar 

  • Oparin AI (1938) The origin of life. MacMillan, New York, pp 270.

    Google Scholar 

  • Palm P, Schleper C, Grampp B et al. (1991) Virology 185: 242–250.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Valera F (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 135–148.

    Google Scholar 

  • Rospert S, Breitung J, Ma K et al. (1991) Arch Microbiol 156: 49–55.

    PubMed  CAS  Google Scholar 

  • Rouvière P, Mandelco L, Winker S et al. (1992) Syst Appi Microbiol 15: 363–371.

    Google Scholar 

  • Russell JB, Strobel HJ (1989) Appi Environ Microbiol 55: 1–6.

    CAS  Google Scholar 

  • Sandman K, Krzycki JA, Dobrinski B et al. (1990) Proc Natl Acad Sci USA 87: 5788–5791.

    PubMed  CAS  Google Scholar 

  • Schäfer Th, Schönheit P (1992) Arch Microbiol 158: 188–202.

    Google Scholar 

  • Schäfer Th, Selig M, Schönheit P (1992) In: Geirsdóttir AM, Brown HP, Sjenstad T (eds) Abstract book. International conference thermophiles: science and technology. IceTec Reykjavik, Iceland, pp 154–155.

    Google Scholar 

  • Schleifer KH, Kandier O (1972) Bacterid Rev 36: 407–477.

    CAS  Google Scholar 

  • Schleifer KH, Ludwig W (1989) In: Fernholm B, Bremer K, Jörnwall H (eds) The hierarchy of life. Ex acta Medica, Amsterdam, pp 103–117.

    Google Scholar 

  • Schieifer KH, Steber J, Mayer H (1982) Zentralbl Bakteriol Hyg I Abt Orig C 3: 171–178.

    Google Scholar 

  • Schleper C, Kubo K, Zillig W (1992) Proc Natl Acad Sci USA (in press).

    Google Scholar 

  • Schmid K, Thomm M, Laminet A et al. (1984) Nucleic Acid Res 12: 2619–2628.

    PubMed  CAS  Google Scholar 

  • Segerer A, Langworthy TA, Stetter KO (1988) Syst Appi Microbiol 10: 161–171.

    Google Scholar 

  • Silveira RG, Nihsio N, Nagai S (1991) J Ferm Bioeng 71: 28–34.

    CAS  Google Scholar 

  • Stetter KO (1991) Arch Microbiol 156: 239–247.

    Google Scholar 

  • Stetter KO (1993) In: Thran TV (ed) Frontiers of life. Editions Frontiers, Gif sur Yvette France (in press).

    Google Scholar 

  • Stetter KO (1993b) In: Bengtson S (ed) Early life on earth. Proceedings of Nobel Symposium ’84. Columbia Univ Press (in press).

    Google Scholar 

  • Stetter KO, Fiala G, Huber G et al. (1990) FEMS Microbiol Rev 75: 117–124.

    Google Scholar 

  • Strauss G, Eisenreich W, Bacher A et al. (1992) Eur J Biochem 205: 853–866.

    PubMed  CAS  Google Scholar 

  • Thran TV (ed) (1993) In: Frontiers of life. Editions Frontiers, Gif sur Yvette France (in press).

    Google Scholar 

  • Trincone A, Nicolaus B, Palmieri G et al. (1992) Syst Appi Microbiol 15: 11–17.

    CAS  Google Scholar 

  • Vassarotti A, Magnien E (eds) (1990) Biotechnology R & D in the EC: Biotechnology Action Programme (BAP) 1981–1989, vols I and II. Elsevier, Brussels.

    Google Scholar 

  • Wächtershäuser G (1988a) System Appi Microbiol 10: 207–210.

    Google Scholar 

  • Wächtershäuser G (1988b) Microbiol Rev 52: 452–480.

    PubMed  Google Scholar 

  • Wächtershäuser G (1990) Proc Natl Acad Sci USA 87: 200–204.

    PubMed  Google Scholar 

  • Wächtershäuser G (1993a) In: Thran TV (ed) Frontiers of life. Editions Frontiers, Gif sur Yvette France (in press).

    Google Scholar 

  • Wächtershäuser G (1993b) In: Bengtson S (ed) Early life on earth. Proceedings of Nobel Symposium ’84. Columbia Univ Press (in press).

    Google Scholar 

  • Walker JCG, Klein C, Schidlowski M et al. (1983) In: Schopf JW (ed) Earth’s earliest biosphereits origin and evolution. Princeton University Press, Princeton.

    Google Scholar 

  • Winker S, Woese CR (1991) Syst Appi Microbiol 14: 305–310.

    CAS  Google Scholar 

  • Woese CR (1987) Microbiol Rev 51: 221–271.

    PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Proc Natl Acad Sci USA 74: 5088–5090.

    PubMed  CAS  Google Scholar 

  • Woese CR, Wolfe RS (eds) (1985) The bacteria, vol VIII. Academic Press, Orlando, pp 1–582.

    Google Scholar 

  • Woese CR, Sogin M, Stahl D et al. (1976) J Mol Evol 7: 197–213.

    PubMed  CAS  Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) J Mol Evol 11: 245–252.

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandier O, Wheelis ML (1990) Proc Natl Acad Sci USA 87: 4576–4579.

    PubMed  CAS  Google Scholar 

  • Woese CR, Achenbach L, Rouviere P et al. (1991) Syst Appi Microbiol 14: 364–371.

    CAS  Google Scholar 

  • Wolfe RS (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London, pp 41–49.

    Google Scholar 

  • Wood HG (1990) In: Schlegel HG, Bovien B (eds) Autotrophic bacteria. Science Publishers, Madison, pp 33–52.

    Google Scholar 

  • Zillig W, Stetter KO, Schnabel R et al. (1982) Zentralbl Bacteriol Hyg I Abt Orig C 3: 218–227.

    CAS  Google Scholar 

  • Zillig W, Gropp F, Henschen A et al. (1986) Syst Appi Microbiol 7: 58–66.

    CAS  Google Scholar 

  • Zillig W, Palm P, Reiter W-D et al. (1988) Eur J Biochem 173: 437–482.

    Google Scholar 

  • Zillig W, Palm P, Klenk HP (1993a) In: Thran TV (ed) Frontiers of life. Editions Frontiers, Gif sur Yvette France (in press).

    Google Scholar 

  • Zillig W, Palm P, Langer D et al. (1992) In: Danson MJ, Hough DW, Lunt GG (eds) The archae-bacteria: biochemistry and biotechnology. Portland Press, London, pp 79. 88.

    Google Scholar 

  • Zillig W, Palm P, Klenk HP et al. (1993b) In: Kates M, Kushner DJ, Matheson AT (eds) The biochemistry of Archaea (archaebacteria). Elsevier, Amsterdam (in press).

    Google Scholar 

  • Zuckerkandl E, Pauling L (1965) J Theor Biol 8: 357–366.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kandler, O. (1993). Archaea Archaebacteria. In: Behnke, HD., Lüttge, U., Esser, K., Kadereit, J.W., Runge, M. (eds) Progress in Botany / Fortschritte der Botanik. Progress in Botany/Fortschritte der Botanik, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78020-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78020-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78022-6

  • Online ISBN: 978-3-642-78020-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics