Skip to main content

Psychotropic Drug Metabolism and Clinical Monitoring

  • Conference paper
Book cover Clinical Pharmacology in Psychiatry

Part of the book series: Psychopharmacology Series ((PSYCHOPHARM,volume 10))

Abstract

The major causes of variability in blood concentrations of psychoactive substances are presystemic and systemic hepatic clearances, with a few exceptions such as lithium or sulpiride. The main reason for this variability is to be found in the lipophilic nature of most psychotropes which favors elimination by metabolism rather than by renal excretion of the unchanged drug. The nature of this variability is, in part, of defined genetic origin (see Brøsen et al., this volume) and, in part, of undefined genetic or poorly controlled environment factors, which interfere with aging, or pathological conditions. Analysis of the interplay of drug metabolism and therapeutic monitoring would thus imply a review of all the aspects of biotransformation which may induce intra- and interindividual variability. Confronted with this (almost) insuperable task, we have decided to concentrate on selected aspects of metabolism. The criteria behind these choices are summarized by three questions: (1) which substances (parent drug and/or metabolite) should be mentioned? (2) how should they be determined? and (3) which approach should be adopted for the interpretation of the concentration data? For each area of interest, we have tried to summarize current knowledge and to express an opinion, which is not necessarily the result of a general consensus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altamura AC, Mauri M, Cavallaro R, Regazzetti MG, Bareggi SR (1989) Hydroxyhaloperidol and clinical outcome in schizophrenia. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer Berlin Heidelberg New York, pp 263–268 (Psychopharmacology series 7 )

    Google Scholar 

  • Axelsson R, Mårtensson E (1983) Clinical effects related to the serum concentrations of thioridazine and its metabolites. In: Gram LF, Usdin E, Dahl SG, Krag-Sørensen P, Sjöqvist F, Morselli PL (eds) Clinical pharmacology in psychiatry. Macmillan, London, pp 165–174

    Google Scholar 

  • Balant-Gorgia AE, Balant LP (1987) Antipsychotic drugs: Clinical pharmacokinetics of potential candidates for plasma concentration monitoring. Clin Pharmacokinet 13: 65–90

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Genet C, Dayer P, Aeschlimann JM, Garrone G (1986) Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites. Eur J Clin Pharmacol 31: 449–455

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Gex-Fabry M, Genet C (1987) Stereoselective disposition of flupentixol: influence on steady-state plasma concentrations in schizophrenic patients. Eur J Drug Metab Pharmacokinet 12: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Balant-Gorgia AE, Balant LP, Garrone G (1989) High blood concentrations of imipramine or clomipramine and therapeutic failure: a case report study using drug monitoring data. Ther Drug Monit 11: 415–420

    PubMed  CAS  Google Scholar 

  • Bertilsson L, Mellström B, Nordin C, Siwers B, Sjöqvist F (1983) Stereospecific 10- hydroxylation of nortriptyline: genetic aspects and importance for biochemical and clinical effects. In: Gram LF, Usdin E, Dahl SG, Krag-Sørensen P, Sjöqvist F, Morselli PL (eds) Clinical pharmacology in psychiatry. Macmillan, London, pp 217–226

    Google Scholar 

  • Bertilsson L, Nordin C, Otani K, Resul B, Scheinin M, Siwers B, Sjöqvist F (1986) Disposition of single oral doses of E-10-hydroxynortriptyline in healthy subjects, with some observations on pharmacodynamic effects. Clin Pharmacol Ther 40: 261–267

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L, Dahl-Puustinen ML, Nordin C (1989) E-10-hydroxynortriptyline: effects and disposition of a potential novel antidepressant. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York, pp 52–59 (Psychopharmacology series 7 )

    Google Scholar 

  • Bock JL, Giller E, Gray S, Jatlow P (1982) Steady-state plasma concentrations of cis- and trans-10-OH-amitriptyline metabolites. Clin Pharmacol Ther 31: 609–616

    Article  PubMed  CAS  Google Scholar 

  • Broadhurst AD, James HD, Delia Corte L, Heeley AF (1977) Clomipramine plasma level and clinical response. Postgrad Med J 53 Suppl 4: 139–145

    Google Scholar 

  • Brøsen K, Gram LF, Klysner R, Bech P (1986) Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur J Clin Pharmacol 30: 43–49

    Article  PubMed  Google Scholar 

  • Browning JL, Harrington CA, Davis CM (1985) Quantification of reduced haloperidol and haloperidol by radioimmunoassay. J Immunoassay 6: 45–66

    Article  PubMed  CAS  Google Scholar 

  • Brunswick DJ, Amsterdam JD, Mendels J, Stern SL (1979) Prediction of steady-state imipramine and desmethylimipramine plasma concentrations from single-dose data. Clin Pharmacol Ther 25: 605–610

    PubMed  CAS  Google Scholar 

  • Chakraborty BS, Hubbard JW, Hawes EM, McKay G, Cooper JK, Gurnsey T, Korchinsky ED, Midha KK (1989) Interconversion between haloperidol and reduced haloperidol in healthy volunteers. Eur J Clin Pharmacol 37: 45–48

    PubMed  CAS  Google Scholar 

  • Chang WH, Chen TY, Lee CF, Hu WH, Yeh EK (1987) Low plasma reduced haloperido/haloperidol ratios in Chinese patients. Biol Psychiatry 22: 1406–1408

    Article  PubMed  CAS  Google Scholar 

  • Chang WH, Lin SK, Jann MW (1991) Interconversion between haloperidol and reduced haloperidol in schizophrenic patients and guinea pigs: a steady-state study. J Clin Psychopharmacol 11: 99–105

    Article  PubMed  CAS  Google Scholar 

  • Dahl SG (1981) Active metabolites of phenothiazine drugs. In: Usdin E, Dahl SG, Gram LF, Lingjaerde O (eds) Clinical pharmacology in psychiatry. Macmillan, London, pp 125–137

    Google Scholar 

  • Dahl SG (1982) Actives metabolites of neuroleptic drugs: possible contribution to therapeutic and toxic effects. In: Raven, New York 4: 33–40

    Google Scholar 

  • Dahl SG (1986) Plasma level monitoring of antipsychotic drugs clinical utility. Clin Pharmacol 11: 36–61

    Article  CAS  Google Scholar 

  • Dahl SG (1990) Conditions for meaningful plasma level monitoring of neuroleptics. In: Stefanis CN, Rabavilas AD, Soldatos CR (eds) Psychiatry: a world perspective, vol 3. Excerpta Medica, Amsterdam

    Google Scholar 

  • Dahl SG, Hjorth M, Hough E (1981) Chlorpromazine, metrotrimeprazine, and metabolites. Structural changes accompanying the loss of neuroleptic potency by ring sulfoxidation. Mol Pharmacol 21: 409–414

    Google Scholar 

  • Dahl SG, Hals PA, Johnsen H, Morel E, Lloyd KG (1982) Possible role of hydroxymetabolites in the action of neuroleptics. In: Gram LF, Usdin E, Dahl SG Krag-Sørensen P, Sjoqvist F, Morselli PL (eds) Clinical pharmacology in psychiatry. Macmillan, London, pp 136–149

    Google Scholar 

  • Dahl-Puustinen ML, Perry TL, Dumont E, von Bahr C, Nordin C, Bertilsson L (1989) Stereoselective disposition of racemin E-10-hydroxynortriptyline in human beings. Chn Pharmacol Ther 45: 650–656

    Article  CAS  Google Scholar 

  • Della Corte L, Broadhurst AD, Sgaragli GP, Filippini S, Heeley AF, Faravelli C, Pazzagli A (1979) Clinical response and tricyclic plasma levels during treatment with clomipramine. Br J Psychiatry 134: 390–400

    Article  PubMed  Google Scholar 

  • Faravelli C, Ballerini A, Ambonetti A, Broadhurst AD, Das M (1984) Plasma levels and clinical response during treatment with clomipramine. J Affect Dis 6: 95–107

    Article  PubMed  CAS  Google Scholar 

  • Froemming JS, Francis Lam YW, Jann MW, Davis CM (1989) Pharmacokinetics of haloperidol. Clin Pharmacokinet 17: 396–423

    Article  PubMed  CAS  Google Scholar 

  • Garver DL (1989) Neuroleptic drug levels and antipsychotic effects: a difficult correlation; potential advantage of free (or derivative) versus total plasma levels. J Clin Psychopharmacol 9: 277–281

    Article  PubMed  CAS  Google Scholar 

  • Gex-Fabry M, Balant-Gorgia A, Balant LP, Garrone G (1990) Clomipramine metabolism: model-based analysis of variability factors from drug monitoring data. Clin Pharmacokinet 19: 241–255

    Article  PubMed  CAS  Google Scholar 

  • Guthrie S, Lane EA, Linnoila M (1987) Monitoring of plasma drug concentrations in clinical psychopharmacology. In: Mellzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 1323–1338

    Google Scholar 

  • Jones RB, Luscombe DK (1976) Plasma levels of clomipramine and its N-desmethyl metabolite following oral administration of clomipramine in man. Br J Pharmacol 57: 430 P

    PubMed  CAS  Google Scholar 

  • Jørgensen A (1986) Metabolism and pharmacokinetics of antipsychotic drugs. Prog Drug Metab 9: 111–174

    Google Scholar 

  • Ko GN, Korpi ER, Kirch DG (1989) Haloperidol and reduced haloperidol concentrations in plasma and red blood cells from chronic schizophrenic patients. J Clin Psychopharmacol 9: 186–190

    Article  PubMed  CAS  Google Scholar 

  • Lin KM, Finder E (1983) Neuroleptic dosage for Asians. Am J Psychiatry 140: 490–491

    PubMed  CAS  Google Scholar 

  • Linnoila M, Insel T, Kilts C, Potter WZ, Murphy DL (1982) Plasma steady-state concentrations of hydroxylated metabolites of clomipramine. Clin Pharmacol Ther 32: 208–211

    Article  PubMed  CAS  Google Scholar 

  • Loennechen T, Andersen A, Hals PA, Dahl SG (1990) High-performance liquid chromatographic determination of levomepromazine (metrotrimeprazine) and its mains metabolites in serum and urine. Ther Drug Monit 12: 574–581

    Article  PubMed  CAS  Google Scholar 

  • Lovdahl MJ, Perry PJ, Miller DD (1991) The assay of clozapine and N- Desmethylclozapine in human plasma by high-performance liquid chromatography. Ther Drug Monit 13: 69–72

    Article  PubMed  CAS  Google Scholar 

  • Mackay AVP, Heeley AF, Baker J (1974) The relationship of plasma chlorpromazine to its 7-hydroxy and sulphoxide metabolites in a large population of chronic schizophrenics. Br J Clin Pharmacol 1: 425–430

    Google Scholar 

  • Marder SR, Van Putten T, Aravagiri M (1989a) Plasma level monitoring for maintenance neuroleptic therapy. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York, pp 269–279 (Psychopharmacology series 7 )

    Google Scholar 

  • Marder SR, Hubbard JW, Van Putten T, Midha KK (1989b) Pharmacokinetics of long-acting injectable neuroleptic drugs: Clinical implications. Psychopharmacology (Berl) 98: 433–439

    Article  CAS  Google Scholar 

  • Mårtensson E, Nyberg G (1989) Active metabolites of neuroleptics in plasma and CSF: Implications for therapeutic drug monitoring. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer Berlin Heidelberg New York, pp 257–262 (Psychopharmacology series 7)

    Google Scholar 

  • Mellström B, Bertilsson L, Säwe J, Schulz HU, Sjöqvist F (1981) E- and Z-10- hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 30: 189–193

    Article  PubMed  Google Scholar 

  • Midha KK, Hubbard JW, Cooper JK, Gurnsey T, Hawes EM, McKay G, Chakraborty BS, Yeung PKF (1987a) Therapeutic monitoring of chlorpromazine IV: comparison of a new high-performance liquid chromatographic method with radioimmunoassays for parent drug and some of its major metabolites. Ther Drug Monit 9: 358–365

    Article  PubMed  CAS  Google Scholar 

  • Midha KK, Hubbard JW, Marder SR, Hawes EM, Van Putten T, McKay G, May PRA (1987b) The sulfoxidation of fluphenazine in schizophrenic patients maintained on fluphenazine decanoate. Psychopharmacology (Berl) 93: 369–373

    Article  CAS  Google Scholar 

  • Midha KK, Cooper JK, Hawes EM, Hubbard JW, Korchinski ED, McKay G (1988) An ultrasensitive method for measurement of haloperidol and reduced haloperidol in plasma by high-performance liquid chromatography with coulometric detection. Ther Drug Monit 10: 177–183

    Article  PubMed  CAS  Google Scholar 

  • Midha KK, Chakraborty BS, Ganes DA, Hawes EM, Hubbard JW, Keegan DL, Korchinski ED, McKay G (1989) Intersubject variation in the pharmacokinetics of haloperidol and reduced haloperidol. J Clin Psychopharmacol 9: 98–104

    Article  PubMed  CAS  Google Scholar 

  • Montgomery SA, McAuley R, Montgomery DB, Braithwaite RA, Dawling S (1979) Dosage adjustment from simple nortriptyline spot level predictor tests in depressed patients. Clin Pharmacokinet 4: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Montgomery SA, McAuley R, Montgomery DB, Dawling S, Braithwaite RA (1980) Plasma concentration of clomipramine and desmethylclomipramine and clinical response in depressed patients. Postgrad Med J 56 Suppl 1: 130–133

    Google Scholar 

  • Montgomery SA, Baldwin D, Shah A, Fineberg N, Montgomery D (1990) Plasma-level response with fluoxetine and zimelidine. Clin Neuropharmacol 13 Suppl 1: S71–S75

    Google Scholar 

  • Moyes ICA, Ray RL, Moyes RB (1980) Plasma levels and clinical improvement: a comparative study of clomipramine and amitriptyline in depression. Postgrad Med J 56 Suppl 1: 127–129

    Google Scholar 

  • Nelson JC, Jatlow PI (1987) Nonlinear desipramine kinetics: prevalence and importance. Clin Pharmacol Ther 6: 666–670

    Article  Google Scholar 

  • Nelson JC, Bock JL, Jatlow PI (1983) Clinical implications of 2-hydroxydesipramine plasma concentrations. Clin Pharmacol Ther 33: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Jatlow PI, Mazure C (1987) Rapid desipramine dose adjustment using 24-hour levels. Clin Psychopharmacol 7: 72–77

    CAS  Google Scholar 

  • Nelson JC, Mazure C, Jatlow PI (1988a) Antidepressant activity of 2-hydroxydesipramine. Clin Pharmacol Ther 44: 283–288

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Atillasoy E, Mazure C, Jatlow PI (1988b) Hydroxydesipramine in the elderly. J Clin Psychopharmacol 8: 428–433

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Mazure C, Jatlow PI (1989) Clinical implications of the pharmacokinetics of tricyclic antidepressants. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York, pp 219–227 (Psychopharmacology series 7 )

    Google Scholar 

  • Nordin C, Bertilsson L, Siwers B (1987) Clinical and biochemical effects during treatment of depression with nortriptyline: the role of 10-hydroxynortriptyline. Clin Pharmacol Ther 42: 10–19

    Article  PubMed  CAS  Google Scholar 

  • Pollock BG, Perel JM (1989) Hydroxy metabolites of tricyclic antidepressants: evaluation of relative cardiotoxicity. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York, pp 232–236 (Psychopharmacology series 7 )

    Google Scholar 

  • Potkin DG, Shen YC, Pardes H, Phelps BH, Zhou DF, Shu L, Korpi ER, Wyatt RJ (1984) Haloperidol concentration elevated in Chinese patients. Psychiatry Res 12: 167–172

    Article  PubMed  CAS  Google Scholar 

  • Potter WZ (1981) Active metabolites of tricyclic antidepressants. In: Usdin E, Dahl SG, Gram LF, Lingjaerde O (eds) Clinical pharmacology in psychiatry. Macmillan, London, pp 139–153

    Google Scholar 

  • Potter WZ, Calil HM, Sutfin TA, Zavadil AP, Jusko WJ, Rapoport J, Goodwin FK (1982) Active metabolites of imipramine and desipramine. Clin Pharmacol Ther 31: 393–401

    Article  PubMed  CAS  Google Scholar 

  • Reisby N, Gram LF, Bech P, Sihm F, Krautwald O, Elley J, Christiansen J (1979) Clomipramine: plasma levels and clinical effects. Commun Psychopharmacol 3: 341–351

    PubMed  CAS  Google Scholar 

  • Rigal JG, Albin HC, Duchier AR, D’Aulnay JM, Fenelon JH, Vincon GA, Demotes-Mainard FM (1987) Imipramine blood levels and clinical outcome. J Clin Psychopharmacol 7: 222–229

    Article  PubMed  CAS  Google Scholar 

  • Schneider LS, Cooper TB, Severson JA, Zemplenyi T, Sloane RB (1988) Electrocardiographic changes with nortriptyline and 10-hydroxynortriptyline in elderly depressed outpatients. J Clin Psychopharmacol 8: 402–408

    Article  PubMed  CAS  Google Scholar 

  • Schneider LS, Cooper TB, Suckow RF, Lyness SA, Haugen C, Palmer R, Sloane RB (1990) Relationship of hydroxy nortriptyline to nortriptyline concentration and creatinine clearance in depressed elderly outpatients. J Clin Psychopharmacol 10: 333–337

    Article  PubMed  CAS  Google Scholar 

  • Shostak M, Perel JM, Stiller RL, Wyman W, Curran S (1987) Plasma haloperidol and clinical response. A role for reduced haloperidol in antipsychotic activity? J Clin Psychopharmacol 7: 394–400

    Article  PubMed  CAS  Google Scholar 

  • Sindrup SH, Brøsen K, Gram LF (1990) Nonlinear kinetics of imipramine in low and medium plasma level ranges. Ther Drug Monit 12: 445–449

    Article  PubMed  CAS  Google Scholar 

  • Slattery JT, Gibaldi M, Koup JR (1980) Prediction of maintenance dose required to attain a desired drug concentration at steady-state from a single determination of concentration after an initial dose. Clin Pharmacokinet 5: 377–385

    Article  PubMed  CAS  Google Scholar 

  • Someya T, Takahashi S, Shibasaki M, Inaba T, Cheung SW, Tang SW (1990) Reduced haloperidol/haloperidol ratios in plasma: polymorphism in Japanese psychiatric patients. Psychiatry Res 31: 111–120

    Article  PubMed  CAS  Google Scholar 

  • Stern SL, Ribner HS, Cooper TB, Nelson LD, Johnson MH, Suckow RF (1991) 2-Hydroxydesipramine and desipramine plasma levels and electrocardiographic effects in depressed younger adults. J Clin Psychopharmacol 11:93–98

    Article  PubMed  CAS  Google Scholar 

  • Sutfin TA, Perini GI, Molnar G, Jusko WJ (1988) Multiple-dose pharmacokinetics of imipramine and its major active and conjugated metabolites in depressed patients. J Clin Psychopharmacol 8: 48–53

    Article  PubMed  CAS  Google Scholar 

  • Vandel B, Vandel S, Jounet JM, Allers G, Volmat R (1982) Relationship between the plasma concentration of clomipramine and desmethylclomipramine in depressive patients and the clinical response. Eur J Clin Pharmacol 22: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Vandel S, Bertschy G, Vandel B, Allers G, Volmat R (1989) Amitriptyline: linear or nonlinear kinetics in every day practice? Eur J Pharmacol 37: 595–598

    CAS  Google Scholar 

  • Vandel S, Bertschy G, Allers G, Volmat R (1990) Nonlinear Kinetics of nortriptyline in every day practice. Eur J Clin Pharmacol 39: 97–98

    Article  PubMed  CAS  Google Scholar 

  • Von Bahr C, Movin G, Nordin C, Lidén A, Hammarlund-Udenaes M, Hedberg A, Ring H, Sjöqvist F (1991) Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 49: 234–240

    Article  Google Scholar 

  • Wode-Helgodt B, Alfredsson G (1981) Concentrations of chlorpromazine and two of its active metabolites in plasma and cerebrospinal fluid of psychotic patients treated with fixed drug doses. Psychopharmacology (Berl) 73: 55–62

    Article  CAS  Google Scholar 

  • Young RC, Dhar AK, Kutt H, Alexopoulos GS (1988) Isomers of 10-hydroxynortriptyline in geriatric depression. Ther Drug Monit 10: 164–167

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balant-Gorgia, A.E., Balant, L.P. (1993). Psychotropic Drug Metabolism and Clinical Monitoring. In: Gram, L.F., Balant, L.P., Meltzer, H.Y., Dahl, S.G. (eds) Clinical Pharmacology in Psychiatry. Psychopharmacology Series, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78010-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78010-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78012-7

  • Online ISBN: 978-3-642-78010-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics