Role of Genetic Polymorphism in Psychopharmacology — An Update

  • K. Brøsen
  • S. H. Sindrup
  • E. Skjelbo
  • K. K. Nielsen
  • L. F. Gram
Part of the Psychopharmacology Series book series (PSYCHOPHARM, volume 10)


Pharmacogenetics is concerned with the genetic basis for interindividual differences in the clinical reponse to drugs. The study of genetic polymorphism in drug metabolism has been an area of particular interest. A genetic polymorphism is a monogenic or mendelian trait that exists in the population in at least two phenotypes (and presumably in at least two genotypes), the rarest of whom exists in at least 1%–2% (Vogel and Motulsky 1982). Thus, two phenotypes are discernible in the case of genetic polymorphism in drug metabolism: a slowly metabolizing phenotype who may develop toxic plasma (tissue) concentrations when a standard dose regimen is employed and a rapidly metabolizing phenotype who may develop subtherapeutic concentrations.


Poor Metabolizers Autosomal Recessive Allele Debrisoquine Hydroxylation Oxidation Polymorphism Debrisoquine Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell IR, Cole JO (1988) Fluoxetine induces elevation of desipramine level and exacerbation of geriatric non psychotic depression. J Clin Psychopharmacol 8: 447–448PubMedCrossRefGoogle Scholar
  2. Bertilsson L, Eichelbaum M, Mellström B, Säwe J, Schulz H-U, Sjöqvist F (1980) Nortriptyline and amitriptyline clearance in relation to debrisoquine hydroxylation in man. Life Sci 27: 1673–1677PubMedCrossRefGoogle Scholar
  3. Bertilsson L, Henthorn TK, Sanch E, Tybring G, Säwe J et al. (1989) Importance of genetic factors in the regulation of diazepam metabohsm: relationship to S-mephenytoin, but not debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 45: 348–355PubMedCrossRefGoogle Scholar
  4. Brinn R, Brøsen K, Gram LF, Haghfelt T, Otton SV (1986) Sparteine oxidation is practically abolished in quinidine-treated patients. Br J Clin Pharmacol 22: 194–197PubMedGoogle Scholar
  5. Britto MR, Wedlund PJ (1992) Cytochrome P-450 in the brain-potential evolutionary and therapeutic relevance of localization of drug metabolizing enzymes. Drug Metab Dispos 20: 446–450PubMedGoogle Scholar
  6. Brøsen K (1990) Recent developments in hepatic drug oxidation - implications for clinical pharmacokinetics. Clin Pharmacokinet 18: 220–239PubMedCrossRefGoogle Scholar
  7. Brøsen K, Gram LF (1989) Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 36: 537–547PubMedCrossRefGoogle Scholar
  8. Brøsen K, Skjelbo E (1991) Fluoxetine and norfluoxetine are potent inhibitors of P450IID6 - the source of the sparteine/debrisoquine oxidation polymorphism. Br J Clin Pharmacol 32: 136–137PubMedGoogle Scholar
  9. Brøsen K, Otton SV, Gram LF (1986) Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 40: 543–549PubMedCrossRefGoogle Scholar
  10. Brøsen K, Gram LF, Kragh-Sørensen P (1991a) Extremely slow metabohsm of amitriptyline but normal metabohsm of imipramine and desipramine in an extensive metabolizer of sparteine, debrisoquine and mephenytoin. Ther Drug Monit 13: 177–182PubMedCrossRefGoogle Scholar
  11. Brøsen K, Zeugin T, Meyer UA (1991b) Role of P450IID6, the target of the sparteine/ debrisoquin oxidation polymorphism in the metabolism of imipramine. Clin Pharmacol Ther 49: 609–617PubMedCrossRefGoogle Scholar
  12. Brøsen K, Hansen MGJ, Nielsen KK, Sindrup SH, Gram LF (1993) Inhibition by paroxetine of desipramine in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol (in press)Google Scholar
  13. Clasen K, Madsen L, Brøsen K, Albøge K, Husfeldt S, Gram LF (1991) Sparteine and mephenytoin oxidation: genetic polymorphisms in East- and West Greenland. Clin Pharmacol Ther 49: 624–631PubMedCrossRefGoogle Scholar
  14. Crewe HK, Lennard MS, Tucker GT, Woods FR, Haddock RE (1992) The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 34: 262–265PubMedGoogle Scholar
  15. Dahl ML, Ekqvist B, Widen J, Bertilsson L (1991) Disposition of the neuroleptic zuclopenthixol co-segregates with the polymorphic hydroxylation of debrisoquine. Acta Psychiatr Scand 84: 99–102PubMedCrossRefGoogle Scholar
  16. Dahl-Puustinen ML, Liden A, Aim C, Nordin C, Bertilsson L (1989) Disposition of perphenazine is related to polymorphic debrisoquine hydroxylation in human beings. Clin Pharmacol Ther 46: 78–81PubMedCrossRefGoogle Scholar
  17. Danish University Antidepressant Group (DUAG) (1990) Paroxetine: a selective serotonin reuptake inhibitor showing better tolerance but weaker antidepressant effect than clomipramine in a controlled multicenter study. J Affect Dis 18: 289–299CrossRefGoogle Scholar
  18. Drøhse A, Bathum L, Brøsen K, Gram LF (1989) Mephenytoin and sparteine oxidation: genetic polymorphisms in Denmark. Br J Clin Pharmacol 27: 620–625PubMedGoogle Scholar
  19. Eichelbaum M, Gross A (1990) The genetic polymorphism of debrisoquine/sparteine metabolism - clinical aspects. Pharmacol Ther 46: 377–394PubMedCrossRefGoogle Scholar
  20. Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ (1979) Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 16: 183–187PubMedCrossRefGoogle Scholar
  21. Evans DAP, Mahgroup A, Sloan TP, Idle JR, Smith RL (1980) A family and population study of genetic polymorphism of debrisoquine oxidation in a white British population. Med Genet 17: 102–105CrossRefGoogle Scholar
  22. Fischer V, Vogels B, Maurer G, Tynes R (1992) The antipsychotic clozapine is metabolized by the polymorphic human microsomal and recombinant cytochrome 2D6. J Pharmacol Exp Ther (in press)Google Scholar
  23. Fonné-Fister R, Meyer UA (1988) Xenobiotic and endobiotic inhibitors of cytochrome P450dbl function, the target of the debrisoquine/sparteine type polymorphism. Biochem Pharmacol 37: 3829–3835CrossRefGoogle Scholar
  24. Gaedigk A, Blum M, Gaedigk R, Eichelbaum M, Meyer UA (1991) Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 48: 943–950PubMedGoogle Scholar
  25. Ged C, Umbenhauer DR, Bellew TM, Bork RW, Srivastava PK et al. (1988) Characterization of cDNAs, mRNAs and proteins related to human liver microsomal cytochrome P-450 (S)-mephenytoin 4’-hydroxylation. Biochemistry 27: 6929–6940PubMedCrossRefGoogle Scholar
  26. Goff DC, Midha KK, Brotman AW, Waites M, Baldessarini RJ (1991) Elevation of plasma concentrations of haloperiodol after the addition of fluoxetine. Am J Psychiatry 148: 790–792PubMedGoogle Scholar
  27. Gram LF, Overø KF (1972) Drug interaction: inhibitory effect of neuroleptics on the metabolism of tricyclic antidepressants in man. Br Med J 163: 463–465CrossRefGoogle Scholar
  28. Heim M, Meyer UA (1990) Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 2: 529–532CrossRefGoogle Scholar
  29. Inaba T, Jurima M, Mahon WA, Kalow W (1988) In vitro studies of two isozymes of human liver cytochrome P450. Mephenytoin p-hydroxylase and sparteine mono- oxygenase. Drug Metab Dispos 13: 443–448Google Scholar
  30. Kagimoto M, Heim M, Kagimoto K, Zeugin T, Meyer UA (1990) Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. J Biol Chem 265: 17209–17214PubMedGoogle Scholar
  31. Kramer Nielsen K, Brøsen K, Gram LF, Danish University Antidepressant Group (1992) The steady-state plasma levels of clomirpamine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol (in press)Google Scholar
  32. Küpfer A, Preisig R (1984) Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol 26: 753–759PubMedCrossRefGoogle Scholar
  33. Llerena A, Aim C, Dahl M-L, Ekqvist B, Bertilsson L (1992) Haloperidol disposition is dependent on the debrisoquine hydroxylation phenotype. Ther Drug Monit 14: 92–97PubMedCrossRefGoogle Scholar
  34. Mellström B, Bertilsson L, Lou Y-C, Säwe J, Sjöqvist F (1983) Amitriptyline metabohsm: relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 34: 516–520PubMedCrossRefGoogle Scholar
  35. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R et al. (1991) The P450 superfamily: update on new sequences, gene mapping and recommended nomenclature. DNA Cell Biol 10: 1–14PubMedCrossRefGoogle Scholar
  36. Niznik HB, Tyndale RF, Sallee FR, Conzalez FJ, Hardwick JP, Inaba T, Kalow W (1990) The dopamine transporter and cytochrome P450IID1 (debrisoquine hydroxylase) in brain: resolution and identification of two distinct [3H] GBR-12935 binding proteins. Arch Biochem Biophys 276: 424–432PubMedCrossRefGoogle Scholar
  37. Otton SV, Inaba T, Kalow W (1983) Inhibition of sparteine oxidation in human liver by tricyclic antidepressants and other drugs. Life Sci 32: 795–800PubMedCrossRefGoogle Scholar
  38. Petersen P, Brøsen K (1991) Severe nortriptyline poisoning in poor metabolizers of sparteine type. Ugeskr Laeger 153: 443–444PubMedGoogle Scholar
  39. Sindrup SH, Gram LF, Brøsen K, Eshøj O, Mogensen EF (1990a) The selective serotonin reuptake inhibitor paroxetine is effective in the treatment of diabetic neuropathy symptoms. Pain 42: 135–144PubMedCrossRefGoogle Scholar
  40. Sindrup SH, Brøsen K, Bjerring P, Arendt-Nielsen L, Larsen U, Angelo HR, Gram LF (1990b) Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 48: 686–693PubMedCrossRefGoogle Scholar
  41. Sindrup SH, Grodum E, Gram LF, Beck-Nielsen H (1991) Concentration-response relationship in paroxetine treatment of diabetic neuropathy symptoms. A patient-blinded dose-escalation study. Ther Drug Monit 13: 408–414PubMedCrossRefGoogle Scholar
  42. Sindrup SH, Brøsen K, Gram LF, Hallas J, Skjelbo E et al. (1992a) The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 51: 278–287PubMedCrossRefGoogle Scholar
  43. Sindrup SH, Brøsen K, Gram LF (1992b) Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine - nonlinearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 51: 288–295PubMedCrossRefGoogle Scholar
  44. Sindrup SH, Brøsen K, Hansen MGJ, Aaes-Jørgensen T, Overø K, Gram LF (1993) The pharmacokinetics of citalopram in relation to the sparteine and mephenytoin oxidation polymorphisms. Ther D Monit (in press)Google Scholar
  45. Sjöqvist F (1989) Pharmacogenetics of antidepressants. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry - from molecular studies to clinical reality. Springer, Berlin Heidelberg New York, pp 181–191Google Scholar
  46. Skjelbo E, Brøsen K (1992) Inhibitors of imipramine metabolism by human liver microsomes. Br J Chn Pharmacol 34 (in press)Google Scholar
  47. Skjelbo E, Brøsen K, Hallas J, Gram LF (1991) The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 49: 18–23PubMedCrossRefGoogle Scholar
  48. Steiner E, Movin G, Wahlen A, Nilsson L, Lindberg A (1988) Pharmacokinetics of the potential antipsychotic drug remoxipride in rapid and slow hydroxylators of debrisoquine. Internal report. ASTRA Alab, Clinical Research, SödertäljeGoogle Scholar
  49. Steiner E, Bertilsson L, Säwe J, Bethling I, Sjöqvist F (1989) Polymorphic debrisoquine hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther 44: 431–435CrossRefGoogle Scholar
  50. Syvälahti E, Lindberg R, Kallio J, de Vocht M (1986) Inhibitory effects of neuroleptics on debrisoquine oxidation in man. Br J Chn Pharmacol 22: 89–92Google Scholar
  51. Tyndale RF, Kalow W, Inaba T (1991a) Oxidation of reduced haloperidol to haloperidol: involvement of human P450IID6 (sparteine/debrisoquine monooxygenase). Br J Chn Pharmacol 31: 655–660Google Scholar
  52. Tyndale RF, Sunahara R, Inaba T, Kalow W, Gonzalez FJ, Niznik HB (1991b) Neuronal cytochrome P450IID1 (debrisoquine/sparteine-type): potent inhibition of activity by (-)-cocaine and nucleotide sequence identity to human hepatic P450 gene CYP2D6. Mol Pharmacol 40: 63–68PubMedGoogle Scholar
  53. Vogel F, Motulsky AD (1982) Human genetics, problems and approaches. Springer, Berlin Heidelberg New YorkGoogle Scholar
  54. Von Bahr C, Spina E, Birgersson C (1985) Inhibition of desmethylimipramine 2- hydroxylation by drags in human liver microsomes. Biochem Pharmacol 14: 2501–2505Google Scholar
  55. Von Bahr C, Movin G, Nordin C, Liden A, Odenaes MH, Hedberg A, Ring H, Sjoqvist F (1991) Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 49: 234–240CrossRefGoogle Scholar
  56. Ward SA, Helsby NA, Skjelbo E, Brøsen K, Gram LF, Breckenridge AM (1991) The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation polymorphism - a panel study. Br J Clin Pharmacol 31: 689–692PubMedGoogle Scholar
  57. Wilkinson GR, Guengerich FP, Branch RA (1989) Genetic polymorphism of S-mephenytoin hydroxylation. Pharmacol Ther 43: 53–76PubMedCrossRefGoogle Scholar
  58. Yue QY, Svensson JO, Aim C, Sjöqvist F, Säwe J (1989) Codeine O-demethylation co-segregates with polymorphic debrisoquine hydroxylation. Br J Clin Pharmacol 28: 639–645PubMedGoogle Scholar
  59. Zanger UM, Vilbois F, Hardwick J, Meyer UA (1988) Absence of hepatic cytochrome P450bufl causes genetically deficient debrisoquine oxidation in man. Biochemistry 27: 5447–5454PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • K. Brøsen
    • 1
  • S. H. Sindrup
    • 1
  • E. Skjelbo
    • 1
  • K. K. Nielsen
    • 1
  • L. F. Gram
    • 1
  1. 1.Department of Clinical PharmacologyOdense UniversityOdense CDenmark

Personalised recommendations