Skip to main content

Transformation in Nicotiana edwardsonii

  • Chapter
Plant Protoplasts and Genetic Engineering III

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 22))

Abstract

Nicotiana edwardsonii Christie and D.W. Hall (Christie and Hall 1979) obtained by crossing N. clevelandii A. Gray with N. glutinosa L. is vigorous, fertile, and hypersensitive to tobacco mosaic virus (TMV). It possesses wide susceptibility to plant viruses like its N. clevelandii parent but has the vigor and size of its N. glutinosa parent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants, EMBO J 4:277–284.

    PubMed  CAS  Google Scholar 

  • Christie SR (1969) Nicotiana hybrid developed as a host for plant viruses. Plant Dis Rep 53(12): 939–941.

    Google Scholar 

  • Christie SR, Hall DW (1979) A new hybrid species of Nicotiana (Solanaceae). Baileya 20(4): 133–136.

    Google Scholar 

  • Covey SN, Hull R (1981) Transcription of cauliflower mosaic virus DNA: Detection of transcripts, properties and location of the gene encoding the virus inclusion body protein. Virology 111:463–474.

    Article  PubMed  CAS  Google Scholar 

  • Daubert SD, Schoelz JE, Debao L, Shepherd RJ (1984) Expression of disease symptoms in cauliflower mosaic virus genomic hybrids. J Mol Appl Genet 2:537–547.

    PubMed  CAS  Google Scholar 

  • Ditta G, Stanfield, S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gramnegative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351.

    Article  PubMed  CAS  Google Scholar 

  • Flick CE, Evans DA, Sharp WR (1983) Organogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture vol 1, Macmillan, New York, pp 13–81.

    Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82:5824–5828.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg K-B, Kiernan J, Gowda S, Schoelz JE, Shepherd RJ (1988) Effects of genes I and VI of two caulimoviruses in transgenic plants. Phytopathology 78:1517 (Abstr).

    Google Scholar 

  • Goldberg K-B, Kiernan J, Schoelz JE, Shepherd RJ (1990) Transgenic host response to gene VI of two caulimoviruses. In: Pirone TP, Shaw JG (eds) Viral genes and plant pathogenesis. Springer, Berlin Heidelberg New York, pp 58–66.

    Chapter  Google Scholar 

  • Goldberg K-B, Kiernan J, Shepherd RJ (1991) A disease syndrome associated with expression of gene VI of caulimoviruses may be a nonhost reaction. Mol Plant-Microbe Interact 4:182–189.

    Article  CAS  Google Scholar 

  • Gorman CM, Moffatt LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1051.

    PubMed  CAS  Google Scholar 

  • Gowda S, Wu FC, Shepherd RJ (1989a) Identification of promoter sequences for the major RNA transcripts of figwort mosaic virus and peanut chlorotic streak virus. J Cell Biochem 13-D (Suppl): 301 (Abstr).

    Google Scholar 

  • Gowda S, Wu FC, Scholthof HB, Shepherd RJ (1989b) Gene VI of figwort mosaic virus (caulimovirus group) functions in posttranscriptional expression of genes on the full-length RNA transcript. Proc Natl Acad Sci USA 86:9203–9207.

    Article  PubMed  CAS  Google Scholar 

  • Gowda S, Scholthof HB, Wu FC, Shepherd RJ (1991) Requirement of gene VII in cis for the expression of downstream genes on the major transcript of figwort mosaic virus. Virology 185:867–871.

    Article  PubMed  CAS  Google Scholar 

  • Harrison BD, Finch JT, Gibbs AJ, Hollings M, Shepherd RJ, Valenta V, Wetter C (1971) Sixteen groups of plant viruses. Virology 45:356–363.

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Jen G, Kayes L, Kramer J, Fraley RT, Chilton M-D (1984) Restriction endonuclease map of pTi Bo542, a potential Ti plasmid vector for genetic engineering of plants. Bio/Technol 2:702–709.

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231.

    Article  CAS  Google Scholar 

  • Hull R, Covey SN (1983) Does cauliflower mosaic virus replicate by reverse transcription? Trends Biochem Sci 8:119–121.

    Article  CAS  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451

    Article  PubMed  CAS  Google Scholar 

  • Kiernan JM, Goldberg K-B, Young MJ, Schoelz JE, Shepherd RJ (1989) Transformation and regeneration of Nicotiana edwardsonii. Plant Sci 64:67–78.

    Article  CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127.

    Article  CAS  Google Scholar 

  • Linstead PJ, Hills GJ, Plaskitt KA, Wilson IG, Harker CL, Maule AJ (1988) The subcellular location of the gene I product of cauliflower mosaic virus is consistent with a function associated with virus spread. J Gen Virol 69:1809–1818.

    Article  CAS  Google Scholar 

  • Malmburg R, Messing J, Sussex I (1985) Molecular biology of plants. Cold Spring Harbor NY: Cold Spring Harbor Laboratory, pp 106–107.

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Ranch JP, Giles KL (1980) Factors affecting growth and aggregate dissociation in batch suspension cultures of Datura innoxia (Miller). Ann Bot 46:667–683.

    CAS  Google Scholar 

  • Richins RD, Scholthof HB, Shepherd RJ (1987) Sequence of figwort mosaic virus DNA (caulimovirus group). Nucleic Acids Res 15:8451–8466.

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Byrd AD, Benzion G, Altschuler MA, Hildebrand DF, Hunt AG (1987) Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Schoelz JE, Shepherd RJ (1988) Host range control of cauliflower mosaic virus. Virology 162:30–37.

    Article  CAS  Google Scholar 

  • Schoelz JE, Shepherd RJ, Richins RD (1986) Properties of an unusual strain of cauliflower mosaic virus. Phytopathology 76(4):451–454.

    Article  Google Scholar 

  • Scholthof HB, Gowda S, Wu FC, Shepherd RJ (1992) The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are trans activated by the product of gene VI. J. Virology 66(5):3131–3139.

    PubMed  CAS  Google Scholar 

  • Shepherd RJ, Richins RD, Duffus JE, Handley MK (1987) Figwort mosaic virus: properties of the virus and its adaption to a new host. Phytopathology 77:1668–1673.

    Article  Google Scholar 

  • Takatsuji H, Hirochika H, Fukushi T, Ikeda JE (1986) Expression of cauliflower mosaic virus reverse transcriptase in yeast. Nature 319:240–243.

    Article  CAS  Google Scholar 

  • Volovitch M, Modjtahedi N, Yot P, Brun G (1984) RNA dependent DNA polymerase activity in cauliflower mosaic virus infected plant leaves. EMBO J 3:309–314.

    PubMed  CAS  Google Scholar 

  • Wu FC, Gowda S, Scholthof HB, Kieman JM, Shepherd RJ (1988) Comparative analysis of caulimo-virus promoters in protoplasts. Phytopathology 78(12): 1517 (abst).

    Google Scholar 

  • Xiong C, Muller S, Lebeurier G, Hirth L (1982) Identification by immunoprecipitation of cauliflower mosaic virus in vitro major translation product with a specific serum against viroplasm protein. EMBO J 1:971–976.

    PubMed  CAS  Google Scholar 

  • Zambryski P, Joos H, Gentello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kiernan, J.M., Wu, F.C., Goldberg, KB., Gowda, S., Shepherd, R.J. (1993). Transformation in Nicotiana edwardsonii . In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering III. Biotechnology in Agriculture and Forestry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78006-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78006-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78008-0

  • Online ISBN: 978-3-642-78006-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics