Skip to main content

Transformation in Mentha Species (Mint)

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 22))

Abstract

The genus Mentha (Labiateae) occurs in all five continents; however, there is only one species native to North America and its occurrence in the tropics is infrequent. Mentha occurs in Australia, but there are a number of species whose relationship with the rest of the genus is uncertain (Harley and Brighton 1977). Mentha species are important because of their production of essential oils which find wide use as food flavors and as fragrances and include spearmint, M. spicata, and peppermint M. piperita.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyoshi DE, Morris RO, Hinz R, Mischke BS, Kosugo T, Garfinkel DJ, Gorden MP, Nester EW (1983) Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80:407–411.

    Article  PubMed  CAS  Google Scholar 

  • Alston RE, Turner BL (1963) In: Alston RE, Turner BL (eds) Biochemical systematics. p. 231 Prentice Hall, New Jersey, USA.

    Google Scholar 

  • Anderson AR, Moore LW (1979) Host specificity in the genus Agrobacterium. Phytopathology 60:320–323.

    Article  Google Scholar 

  • Aviv A, Krochmal E, Dantees A, Galun E (1981) Biotransformation in monoterpenes by Mentha cell lines: conversion of menthothone to neomenthol. Planta Med 42:236–243.

    Article  PubMed  CAS  Google Scholar 

  • Berry C, Van Eck J, Kitto S, Smigocki A (1990) Transformation of orangemint (Mentha citrata) with Agrobacterium tumefaciens. Hort. Science 25: 1165 (Abstr).

    Google Scholar 

  • Braun AC, Wood HN (1976) Suppression of the neoplastic state with the acquisition of specialised functions in cells, tissues, and organs of crown gall teratomas of tobacco. Proc Natl Acad Sci USA 73:496–500.

    Article  PubMed  CAS  Google Scholar 

  • Bricout J, Paupardin C (1975) Sur la composition de l’huile essentielle de Mentha piperita L. cultivé in vitro: influence de quelques facteurs sur sa synthase. CR Acad Sci Paris 281:383–386.

    CAS  Google Scholar 

  • Bricout J, Garcia-Rodriguez M, Paupardin C (1978) Action de la colchine sur la synthase d’huile essentielle par des tissues de Mentha piperita cultivés in vitro CR Acad Sci Paris 286:1585–1588.

    CAS  Google Scholar 

  • Caelles A, Ferrer A, Balcells L, Hegardt FG, Boronat A (1989) Isolation and characterisation of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl CoA reductase. Plant Mol Biol 13:627–638

    Article  PubMed  CAS  Google Scholar 

  • Carter P, Bedouelle H, Winter G (1985) Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res 13:4431–4443.

    Article  PubMed  CAS  Google Scholar 

  • Charlwood BV, Brown JT, Mouston C, Morris GS, Charlwood KA (1988) The accumulation of isoprenoid flavour compounds in plant cell cultures. In: Schreier P (ed) Bioflavour’ 87. Gruyter, Berlin, pp 303–314.

    Google Scholar 

  • Chye M-L, Kush A, Tan C-T, Chau N-H (1991) Characterisation of cDNA and genomic clones encoding 3 hydroxy-3-methylglutaryl CoA reductase from Hevea brasiliensis. Plant Mol Biol 16:567–577.

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Venkatachalam KV (1986) Metabolism of monoterpenes: demonstration that (+)-cis-isopulegone, not piperitenone, is the key intermediate in the conversion of (−)-isopiperitenone to (+)-pulegone in peppermint (Mentha piperita). Arch Biochem Biophys 249:306–315.

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ, Marks MS, Brown MM, Woolston CJ, Gunn HV, Mullineaux PM, Lewis DM, Kemp JM, Chen DF, Gilmour DM, Flavell RB (1989) Agroinfection of wheat: inoculation of in vitro grown seedlings and embryos. Plant Sci 63:237–245.

    Article  CAS  Google Scholar 

  • Depicker A, De Wilde M, De Vos G, De Vos R, Van Montagu M, Schell J (1980) Molecular cloning of overlapping segments of the nopaline Ti-plasmid pTiC58 as a means to restriction endonuclease mapping. Plasmid 3:193–211.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for radio labelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267.

    Article  PubMed  CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissid B, Comai L (1987) Agrobacterium-mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199.

    Article  CAS  Google Scholar 

  • Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153.

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, Croteau R (1990) Regulation of monoterpene biosynthesis in higher plants. Recent Adv Phytochem 24:99–160.

    CAS  Google Scholar 

  • Goldberg SB, Flick JS, Rogers SG (1984) Nucleotide sequence of the tmr locus of Agrobacterium tumefaciens pTi T37 T-DNA. Nucleic Acids Res 12:4665–4678.

    Article  PubMed  CAS  Google Scholar 

  • Gray JC (1987) Control of isoprenoid biosynthesis in higher plants. Adv Bot Res 14:25–91.

    Article  CAS  Google Scholar 

  • Gresshoff PM, Skitnicki ML, Rolfe BG (1979) Crown gall teratoma formation is plasmid-and plant-controlled. J Bacteriol 137:1020–1021.

    PubMed  CAS  Google Scholar 

  • Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114.

    Article  CAS  Google Scholar 

  • Hamill JD, Parr AJ, Rhodes MJC, Robins RJ, Walton NJ (1987) New routes to plant secondary products. Bio/Technol 5:800–804.

    Article  CAS  Google Scholar 

  • Hamill JD, Evans DM, Robins RJ, Rhodes MJC (1988) Foreign gene insertion into transformed roots with binary vectors and Agrobacterium rhizogenes — potential for genetic manipulation of plant secondary metabolism. In: Robins RJ, Rhodes MJC (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge, pp 145–153.

    Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC (1991) The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10:221–224.

    Article  CAS  Google Scholar 

  • Harley RM, Brighton CA (1977) Chromosome numbers in the genus Mentha L. Bot J Linn Soc 74:91–96.

    Article  Google Scholar 

  • Heble MR (1985) Multiple shoot cultures: a viable alternative in vitro system for the production of known and new biologically active plant constituents. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York, pp 281–289.

    Chapter  Google Scholar 

  • Hirata T, Murakami S, Ogihara K, Suga T (1990) Volatile monoterpenoid constituents of the plantlets of Mentha spicata produced by shoot tip culture. Phytochemistry 29:493–495.

    Article  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180.

    Article  CAS  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877.

    Article  PubMed  CAS  Google Scholar 

  • Karp F, Mihaliak CA, Harris J-L, Croteau R (1990) Monoterpene biosynthesis. Specificity of the hydroxylation of levo-limonene by enzyme preparations from peppermint, Mentha piperita, spearmint Mentha spicata and perilla, Perilla fiutescens. Arch Biochem Biophys 276:219–226.

    Article  PubMed  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV35S Promoter sequences creates a stronger enhancer for plant genes. Science 236:1299–1302.

    Article  PubMed  CAS  Google Scholar 

  • Kjonaas R, Martinkus-Taylor C, Croteau R (1982) Metabolism of monoterpenes: conversion of 1-menthone to 1-menthol and d-neomenthol by stereospecific dehydrogenases from peppermint (Mentha piperita) leaves. Plant Physiol 69:1013–1017.

    Article  PubMed  CAS  Google Scholar 

  • Korber H, Strizhov N, Staiger D, Fledwisch J, Olsson O, Sandberg G, Palme K, Schell J, Koncz C (1991) T-DNA gene 5 of Agrobacterium modulates auxin response by autoregulated synthesis of a growth hormone antagonist in plants. EMBO J 10:3983–3991.

    PubMed  CAS  Google Scholar 

  • Lassner MW, Peterson P, Yoder JI (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128.

    Article  CAS  Google Scholar 

  • Loomis WD (1967) Biosynthesis and metabolism of monoterpenes. In: Pridham JD (ed) Terpenes in plants. Academic Press, London, pp 59–82.

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual Cold Spring Harbour Laboratory.

    Google Scholar 

  • Martin C, Carpenter R, Sommer H, Saedlet H, Coen ES (1985) Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J 4:1625–1630.

    PubMed  CAS  Google Scholar 

  • McLafferty FW, Stauffer DB (1989) The Wiley/NBS registry of mass spectral data. Wiley, New York.

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Ooms G, Klapwijk PM, Poulis JA, Schilperoort RA (1980) Characterization of Tn904 insertions in octopine Ti-plasmid mutants of Agrobacterium tumefaciens. J Bacteriol 144:82–91.

    PubMed  CAS  Google Scholar 

  • Ooms G, Hooykaas PJJ, Moolenaar G, Schilperoort RA (1981) Crown gall plant tumours of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutant octopine Ti plasmids; analysis of T-DNA functions. Gene 14:33–50.

    Article  PubMed  CAS  Google Scholar 

  • Ooms G, Basins A, Burrell M, Karp A, Twell D, Wilcox E (1985) Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium. Theor Appl Genet 71:325–329.

    Google Scholar 

  • Paupardin C (1976) Sur la differentiation d’un tissu secreteur et la formation d’huile essentielle par des tissue végétaux cultivés in vitro. Comptes rendus du Congrès National Sociétés Savantes Section des Sciences vol 101(1), pp 619–628.

    CAS  Google Scholar 

  • Rhodes MJC, Spencer A, Hamill JD, Robins RJ (1992) Flavour improvement through plant cell culture. In: Charlwood BV, Patterson RLS, MacLeod G, Williams AA (eds) Bioformation of flavour. Royal Society of Chemistry, London pp 42–64. Cambridge University Press, Cambridge.

    Google Scholar 

  • Saunders PR, Winter JA, Barnason AR, Rogers SG, Fraley RT (1987) Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res 15:1543–1558.

    Article  Google Scholar 

  • Schmulling T, Beinsberger S, De Greef J, Schell J, Van Onckelen H, Spena A (1989) Construction of a heat-inducible chimeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett 249:401–406.

    Article  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131.

    PubMed  CAS  Google Scholar 

  • Smigoki AC, Owens LD (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA 85:5131–5135.

    Article  Google Scholar 

  • Spencer A (1991) The development of shooty teratomas in Mentha species by genetic manipulation and studies on their growth and terpene production in vitro. PhD Thesis, Univ of East Anglia.

    Google Scholar 

  • Spencer A, Hamill JD, Rhodes MJC (1990) Production of terpenes by differentiated shoot cultures of Mentha citrata transformed with Agrobacterium tumefaciens T37. Plant Cell Rep 8:601–604.

    Article  CAS  Google Scholar 

  • Suga T, Hirata T, Aoki T and Shishib T (1986) Inter-conversion and cyclisation of acylic allylpyrophosphates in the biosynthesis of cyclic monoterpenes in hydro plants Phytochem. 25:2769–2776.

    Article  CAS  Google Scholar 

  • Tinland B, Huss B, Paulus F, Bonnard G, Otten L (1989) Agrobacterium tumefaciens 6b genes are strain-specific and affect the activity of auxin as well as cytokinin genes. Mol Gen Genet 219:217–224

    Article  CAS  Google Scholar 

  • Zieg RG, Zito SW, Staba EJ (1983) Selection of high pyrethrin-producing tissue cultures. Planta Med 48:88–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spencer, A., Hamill, J.D., Rhodes, M.J.C. (1993). Transformation in Mentha Species (Mint). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering III. Biotechnology in Agriculture and Forestry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78006-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78006-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78008-0

  • Online ISBN: 978-3-642-78006-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics