Skip to main content

Transformation in Helianthus annuus L. (Sunflower)

  • Chapter
Plant Protoplasts and Genetic Engineering III

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 22))

Abstract

The successful application of Agrobacterium transformation methods to a specific crop has its inherent problems. Firstly, it is dependent on the susceptibility of the species to Agrobacterium infection and on its potential to regenerate from transformed cells into fertile plants. Unfortunately, a number of reliable regeneration protocols, developed in the past decade, proved unsuitable for transformation with Agrobacterium. A possible explanation is the stress response of the plant tissue during cocultivation with the bacterium, which inhibits efficient regeneration. This is especially true for regeneration methods that need long (more than several months) and complex (several sequential hormone regimes) tissue culture phases. Also, for certain antibiotics that are used to stop bacterial growth, phytohormone activities are known. This may have detrimental effects on regeneration. Furthermore, somaclonal variation as a result of tissue culture poses a problem for plant genetic engineering: it is generally aimed at the introduction of only a specific trait carried by one or several genes into the target crop. All intrinsic qualities of the target cultivars should remain otherwise unchanged. Ideally, the tissue culture phase after transformation should be abandoned completely or kept to a minimal period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Binding H, Nehls R, Kock R, Finger J, Mordhorst G (1981) Comparative studies on protoplast regeneration in herbaceous species of the Dicotyledoneae class. Z Pflanzenphysiol 101:119–130.

    Google Scholar 

  • Bohorova NE, Cocking EC, Power JB (1986) Isolation, culture and callus regeneration of protoplasts of wild and cultivated Helianthus species. Plant Cell Rep 5:256–258.

    Article  Google Scholar 

  • Chee PP, Fober KA, Slightom JL (1989) Transformation of soybean (Glycine max) by infecting germinating seeds with Agrobacterium tumefaciens. Plant Physiol. 91:1212–1218.

    Article  PubMed  CAS  Google Scholar 

  • Espinasse A, Lay C (1989) Shoot regeneration of callus derived from globular to torpedo embryos from 59 sunflower genotypes. Crop Sci 29:201–205.

    Article  Google Scholar 

  • Everett NP, Robinson KEP, Mascarenhas D (1987) Genetic engineering of sunflower (Helianthus annum L.). Bio/Technol 5:1201–1204.

    Article  CAS  Google Scholar 

  • Gould J, Devey M, Hasegawa O, Ulian UC, Peterson G, Smith RH (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95:426–434.

    Article  PubMed  CAS  Google Scholar 

  • Greco B, Tanzarella OA, Carrozzo G, Blanco A (1984) Callus induction and shoot regeneration in sunflower (Helianthus annuus L.). Plant Sci Lett 36:73–77.

    Article  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plasmid vector strategy based on separation of vir-and T-regions of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180.

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A282 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301.

    PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907.

    PubMed  CAS  Google Scholar 

  • Jegla DE, Sussex IM (1989) Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed. Dev Biol 131:215–225.

    Article  PubMed  CAS  Google Scholar 

  • Koekman BP, Hooijkaas PJJ, Schilperoort RA (1982) A functional map of the replication region of the octopine Ti plasmid. Plasmid 7:119–132.

    Article  PubMed  CAS  Google Scholar 

  • McCabe DE, Swain FS, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technol 6:923–926.

    Article  Google Scholar 

  • McCann AW, Cooley G, Van Dreser J (1988) A system for routine plantlet regeneration of sunflower (Helianthus annuus L.) from immature embryo-derived callus. Plant Cell Tissue Organ Cult 14:103–110.

    Article  Google Scholar 

  • Monsan P (1991) Pioneer Hi-Bred halves the time for achieving stable sunflower transformation. Biotechnol News 11(6): 3.

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Power CJ (1987) Organogenesis from Helianthus annuus inbreds and hybrids from the cotyledons of zygotic embryos. Am J Bot 74:497–503.

    Article  CAS  Google Scholar 

  • Schmitz P, Schnabl H (1989) Regeneration and evacuolation of protoplasts from mesophyll, hypocotyl and petioles from Helianthus annuus L. J Plant Physiol 135:223–227.

    Google Scholar 

  • Schrammeijer B, Sijmons PC, van den Elzen PJM, Hoekema A (1990) Meristem transformation of sunflower via Agrobacterium. Plant Cell Rep 9:55–60.

    Article  CAS  Google Scholar 

  • Ulian E, Smith R, Gould J, McKnight T (1988) Transformation of plants via the shoot apex. In Vitro Cell Dev Biol 24:951–954.

    Article  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250.

    Article  PubMed  CAS  Google Scholar 

  • Witrzens B, Scowcroft WR, Downes RW, Larkin PJ (1988) Tissue culture and plant regeneration from sunflower (Helianthus annuus) and interspecific hybrids (H. tuberosus x H. annuus). Plant Cell Tissue Organ Cult 13:61–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrammeijer, B., Hoekema, A., Sijmons, P.C. (1993). Transformation in Helianthus annuus L. (Sunflower). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering III. Biotechnology in Agriculture and Forestry, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78006-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78006-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78008-0

  • Online ISBN: 978-3-642-78006-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics