Transformation in Digitalis purpurea L. (Foxglove)

  • Kazuki Saito
  • Mami Yamazaki
  • Koichiro Shimomura
  • Kayo Yoshimatsu
  • Isamu Murakoshi
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 22)

Abstract

Foxglove (Digitalis purpurea L., common foxglove, D. lanata Ehrh., Grecian foxglove, and other related species) is one of the most commonly used medicinal plants in the world (Trease and Evans 1983). The dried leaves are used as a crude drug and contain a number of cardioactive glycosides, e.g., digitoxin, gitoxin, etc. A large number of reports have been published on tissue culture, regeneration, production, and biotransformation of cardenolides in Digitalis species (for review see Rücker 1988). However, only one paper has appeared on genetic transformation of D. purpurea (Saito et al. 1990a). The efficient transfer and the strong expression of foreign genes in foxglove offer promising possibility of genetic manipulation of secondary metabolism of this plant.

Keywords

Chlorophyll Assimilation Sewage Gall Glycoside 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518.PubMedGoogle Scholar
  2. De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spano L, Constantino P (1985) Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes. Plasmid 13:1–7.PubMedCrossRefGoogle Scholar
  3. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158.PubMedCrossRefGoogle Scholar
  4. Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science 244:1293–1299.PubMedCrossRefGoogle Scholar
  5. Hamil JD, Prescott A, Martin C (1987) Assessment of the efficiency of cotransformation of the T-DNA of disarmed binary vectors derived from Agrobacterium tumefaciens and the T-DNA of A. rhizogenes. Plant Mol Biol 9:573–584.CrossRefGoogle Scholar
  6. Jafferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907.Google Scholar
  7. Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102.PubMedCrossRefGoogle Scholar
  8. Moldenhauer D, Fürst B, Diettrich B, Luckner M (1990) Cardenolides in Digitalis lanata cells transformed with Ti plasmids. Planta Med 56:435–438.PubMedCrossRefGoogle Scholar
  9. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.CrossRefGoogle Scholar
  10. Peleman J, Saito K, Cottyn B, Engler G, Seurinck J, Van Montagu M, Inze D (1989) Structure and expression analysis of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. Gene 84:359–369.PubMedCrossRefGoogle Scholar
  11. Rücker W (1988) Digitalis spp.: In vitro culture, regeneration, and the production of cardenolides and other secondary products. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 4. Medicinal and aromatic plants I. Springer, Berlin Heidelberg New York, pp 388–418.Google Scholar
  12. Saito K, Yamazaki M, Yamakawa K, Fujisawa S, Takamatsu S, Kawaguchi A, Murakoshi I (1989a) Lupin alkaloids in tissue culture of Sophora flavescens var. angustifolia: greening-induced production of matrine. Chem Pharm Bull 37:3001–3004.Google Scholar
  13. Saito K, Yamazaki M, Takamatsu S, Kawaguchi A, Murakoshi I (1989b) Greening-induced production (+)-lupanine in tissue culture of Thermopsis lupinoides. Phytochemistry 28:2341–2344.CrossRefGoogle Scholar
  14. Saito K, Yamazaki M, Shimomura K, Yoshimatsu K, Murakoshi I (1990a) Genetic transformation of foxglove (Digitalis purpurea) by chimeric foreign genes and production of cardioactive glycosides. Plant Cell Rep 9:121–124.CrossRefGoogle Scholar
  15. Saito K, Kaneko H, Yamazaki M, Yoshida M, Murakoshi I (1990b) Stable transfer and expression of chimeric genes in licorice (Glycyrrhiza uralensis) using an Ri plasmid binary vector. Plant Cell Rep 8:718–721.CrossRefGoogle Scholar
  16. Saito K, Yamazaki M, Kaneko H, Murakoshi I, Fukuda Y, Van Montagu M (1991) Tissue-specific and stress enhancing expression of the TR promoter for mannopine synthase in transgenic medicinal plants. Planta 184:40–46.CrossRefGoogle Scholar
  17. Tepfer D, Metzger L, Prost R (1989) Use of roots transformed by Agrobacterium rhizogenes in rhizosphere research: applications in studies of cadmium assimilation from sewage. Plant Mol Biol 13:295–302.PubMedCrossRefGoogle Scholar
  18. Trease GE, Evans WC (1983) Pharmacognosy, 12th edn. Bailliere Tindall, London, pp 500–509.Google Scholar
  19. Veiten J, Veiten L, Hain R, Schell J (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J 3:2723–2730.Google Scholar
  20. Yoshimatsu K, Satake M, Shimomura K, Sawada J, Terao T (1990) Determination of cardenolides in hairy root cultures of Digitalis lanata by enzyme-linked immunosorbent assay. J Nat Prod 53:1498–1502.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Kazuki Saito
    • 1
  • Mami Yamazaki
    • 1
  • Koichiro Shimomura
    • 2
  • Kayo Yoshimatsu
    • 2
  • Isamu Murakoshi
    • 1
  1. 1.Faculty of Pharmaceutical SciencesChiba UniversityInage-ku, Chiba 263Japan
  2. 2.Tsukuba Medicinal Plant Research StationNational Institute of Hygienic SciencesTsukuba, Ibaraki 305Japan

Personalised recommendations