Transformation in Catharanthus Species (Madagascar Periwinkle)

  • C. David
  • J. Tempé
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 22)

Abstract

Secondary metabolite production by plant cell cultures has been the subject of many investigations. Indole alkaloids such as ajmalicine, an antihypertensive drug, or vinblastine and vincristin, two antitumor compounds produced by Catharanthus roseus, are very important in the pharmaceutical industry. Cell cultures from the same plant species have been propagated in several laboratories since they are expected to produce physiologically potent indole alkaloids (Carew 1975). Undifferentiated cell lines producing high yields of ajmalicine, or serpentine, that can be easily converted into ajmalicine by reduction, have been obtained by selection (Zenk et al. 1977).

Keywords

Indole Lysozyme Colchicine Vincristine Serpentine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atta-ur-Rahman, Bashir M, Hafeez M, Perveen N, Fatima J, Mistry AN (1983) A rapid procedure for the isolation of catharanthine, vindoline and vinblastine. Planta Med 47:246–247.CrossRefGoogle Scholar
  2. Bajaj YPS (1990) Somaclonal variation — Origin, induction, cryopreservation, and implications in plant breeding. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York, pp 3–48.Google Scholar
  3. Bedin (1991) Construction de vecteurs du gène du lysozyme: étude d’un système modèle et expression dans des plantes transgéniques. Thèse de l’Université Bordeaux II.Google Scholar
  4. Birot AM, Boucher D, Casse-Delbart F, Durand-Tardif M, Jouanin L, Pautot V, Robaglia C, Tepfer D, Tepfer M, Tourneur J, Vilaine F (1987) Studies and uses of the Ri plasmids of Agrobacterium rhizogenes. Plant Physiol Biochem 25:323–335.Google Scholar
  5. Blasko G, Cordell G (1990) Isolation, structure elucidation and biosynthesis of the bisindole alkaloids of Catharanthus. In: Brossi A, Suffness M (eds) The alkaloids, vol 37. Antitumor bisindole alkaloids from Catharanthus roseus. Academic Press, San Diego, California, pp 1–76.CrossRefGoogle Scholar
  6. Braun AC (1947) Thermal studies on the factors responsible for tumor initiation in crown gall. Am J Bot 34:234–240.PubMedCrossRefGoogle Scholar
  7. Brillanceau MH (1986) Etude chimique des alcaloldes de deux espèces du genre Guettarda. Culture in vitro de racines transformées par Agrobacterium rhizogenes. Thèse de l’Université Paris-sud, Centre de Chatenay-Malabry.Google Scholar
  8. Brillanceau MH, David C, Tempé J (1989) Transformation of Catharanthus roseus G. Don by Agrobacterium rhizogenes. Plant Cell Rep 8:63–66.CrossRefGoogle Scholar
  9. Carew DP (1975) Tissue culture studies of Catharanthus roseus. In: Taylor WI, Farnsworth NR (eds) The Catharanthus alkaloids. Marcel Dekker, New York, p 193.Google Scholar
  10. Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes T-DNA into the genomes of the host plant root cells. Nature 295:432–434.CrossRefGoogle Scholar
  11. Constabel CP (1990) Medicinal plant biotechnology. Planta Med 56:421–425.PubMedCrossRefGoogle Scholar
  12. Constabel CP, Towers GHN (1989) Thiarubine accumulation in hairy root cultures of Chaenactis douglasii. J Plant Physiol 133:67–70.Google Scholar
  13. David C, Tempé J (1987) Segregation of T-DNA copies in the progeny of a regenerant plant from a mannopine-positive hairy root line. Plant Mol Biol 9:585–592.CrossRefGoogle Scholar
  14. David C, Chilton MD, Tempé J (1984) Conservation of T-DNA in plants regenerated from hairy root cultures. Bio/Technol 2:73–76.CrossRefGoogle Scholar
  15. Davioud E, Kan C, Quirion JC, Das BC, Husson HP (1989a) Epiallo-yohimbine derivatives isolated from in vitro hairy root cultures of Catharanthus trichophyllus. Phytochemistry 28:1383–1387.CrossRefGoogle Scholar
  16. Davioud E, Kan C, Hamon J, Tempe J, Husson HP (1989b) Production of indole alkaloids by in vitro root cultures from Catharanthus trichophyllus. Phytochemistry 28:2675–2680.CrossRefGoogle Scholar
  17. De Cleene (1980) A possibility for increasing the production of physiologically active substances by in vitro plant tumour cultures. J Speculations Sci Technol 3:353–356.Google Scholar
  18. De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylase. Proc Natl Acad Sci USA 86:2582–2586.PubMedCrossRefGoogle Scholar
  19. De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spano L, Costantino P (1985) Localization of agropine-synthesizing functions in the TR region of the root inducing plasmid of Agrobacterium rhizogenes. Plasmid 13:1–7.PubMedCrossRefGoogle Scholar
  20. Depicker A, Herman L, Jacobs A, Schell J, van Montagu M (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/cell interaction. Mol Gen Genet 210:477–484.CrossRefGoogle Scholar
  21. Deus-Neumann B, Zenk MH (1984) Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Plant Med 50:427–431.CrossRefGoogle Scholar
  22. Eilert U, De Luca V, Kurz WGW, Constabel F (1987a) Alkaloids formation by habituated and tumorous cell suspension cultures of Catharanthus roseus. Plant Cell Rep 6:271–274.CrossRefGoogle Scholar
  23. Eilert U, De Luca V, Constabel F Kurz WGW (1987b) Elicitor-mediated induction of tryptophan decarboxylase and strictosidine synthase activities in cell suspension cultures of Catharanthus roseus. Arch Biochem Biophys 254:491–497.PubMedCrossRefGoogle Scholar
  24. Evans DA, Sharp WR (1986) Applications of somaclonal variation. Bio/Technol 4:528–532.CrossRefGoogle Scholar
  25. Fontanel A, Tabata M (1987) Production of secondary metabolites by plant tissue and cell cultures. Present aspects and prospects. In: Nestec LTD (ed) Nestlé Research News, Vevey, Switzerland, pp 92–103.Google Scholar
  26. Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by culture of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep. 5:111–114.CrossRefGoogle Scholar
  27. Huffman GA, White FF, Gordon MP, Nester GW (1984) Hairy root inducing plasmid: physical map and homology to tumor inducing plasmids. J Bacteriol 157:269–276.PubMedGoogle Scholar
  28. Jaziri M, Legros M, Homes J, Vanhaelen M, (1988) Tropane alkaloids production by hairy root cultures of Datura stramonium and Hyoscyamus niger. Phytochemistry 27:419–420.CrossRefGoogle Scholar
  29. Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102.PubMedCrossRefGoogle Scholar
  30. Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro. Plant Sci 50:145–151.CrossRefGoogle Scholar
  31. Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5:239–242.CrossRefGoogle Scholar
  32. Kutchan TM (1989) Expression of enzymatically active cloned strictosidine synthase from the higher plant Rauvolfia serpentina in Escherichia coli. FEBs Lett 257:127–130.PubMedCrossRefGoogle Scholar
  33. Kutchan TM, Hampp N, Lottspeich F, Beyreuter K, Zenk MH (1988) The cDNA clone for strictosidine synthase from Rauvolfia serpentina. DNA sequence determination and expression in Escherichia coli. FEBS Lett 237:40–44.PubMedCrossRefGoogle Scholar
  34. Larkin PJ, Scowcroft WR (1981) Somaclonal variation. A novel source of variability from cell cultures. Theor Appl Genet 60:197–214.CrossRefGoogle Scholar
  35. Leete E (1989) Recent developments in the biosynthesis of the tropane alkaloids. Planta Med 56:339–352.CrossRefGoogle Scholar
  36. Mano Y, Nabeshima S, Matsui C, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50:2715–2722.CrossRefGoogle Scholar
  37. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new Petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678.PubMedCrossRefGoogle Scholar
  38. Mugnier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12.CrossRefGoogle Scholar
  39. Ondrej M, Protiva J (1987) In vitro culture of crown gall and hairy root tumors of Atropa belladonna: differentiation and alkaloid production. Biol Plant 29:241–246.CrossRefGoogle Scholar
  40. Parr AJ, Peerless ACJ, Hamill JB, Walton NJ, Robins RJ, Rhodes MJC (1988) Alkaloid production by transformed root cultures of Catharanthus roseus. Plant Cell Rep 7:309–312.CrossRefGoogle Scholar
  41. Petit A, Berkaloff A, Tempé J (1986) Multiple transformation of plant cells by Agrobacterium may be responsible for the complex organization of T-DNA in crown gall and hairy root. Mol Gen Genet 202:388–393.CrossRefGoogle Scholar
  42. Pfitzner U, Zenk MH (1989) Homogeneous strictosidine synthase isoenzymes from cell suspension cultures of Catharanthus roseus. Planta Med 55:525–530.PubMedCrossRefGoogle Scholar
  43. Riker AJ, Banfield WM, Wright WH, Keitt GW, Sagen HE (1930) Studies on infectious hairy root of nursery apple trees. J. Agric Res (Washington DC) 41:507–540.Google Scholar
  44. Routien JB, Tenafly NJ, Nickell LG (1956) Cultivation of plant tissue. US Patent Office (chas. Pfizer and Co.) No 2.747.334.Google Scholar
  45. Scott AI (1970) Biosynthesis of the indole alkaloids. Acc Chem Res 3:151–157.CrossRefGoogle Scholar
  46. Shen WH, Davioud E, David C, Barbier-Brygoo H, Tempé, Guem J (1990) High sensitivity to auxin is a common feature of hairy root. Plant Physiol 94:554–560.PubMedCrossRefGoogle Scholar
  47. Songstad DD, De Luca V, Brisson N, Kurz WGW, Nessler CL (1990) High levels of tryptamine accumulation in transgenic tobacco expressing tryptophane decarboxylase. Plant Physiol 94:1410–1413.PubMedCrossRefGoogle Scholar
  48. Stearn WT (1966) Catharanthus roseus, the correct name for the Madagascar periwinkle. Llyodia 29:196–200.Google Scholar
  49. Stöckigty, Zenk MH (1977) Isovincoside (strictosidine), the key intermediate in the enzymatic formation of indole alkaloids. FEBS Lett 79:233–237.CrossRefGoogle Scholar
  50. Svoboda GH (1961) Alkaloids of Vinca rosea (Catharanthus roseus). IX. Extraction and characterization of leurosidine and leurocristine. Llyodia 24:173–178.Google Scholar
  51. Tabata M, Fujita Y (1985) Production of shikonin by plant cell cultures. In: Zaitlin M, Day PR, Hollaender A (eds) Biotechnology in plant science. Academic Press, Orlando, Florida, pp 217–218.Google Scholar
  52. Tempé J, Casse-Delbart F (1989) Plant gene vectors and genetic transformation. Agrobacterium Ri plasmids. In: Schell J, Vasil IK (eds) Cell culture and somatic cell genetics of plants: the molecular biology of nuclear genes, vol 6. Academic Press, San Diego, California, pp 25–49.Google Scholar
  53. Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 37:959–967.PubMedCrossRefGoogle Scholar
  54. Treimer J, Zenk MH (1979a) Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation. Eur J Biochem 101:225–233.PubMedCrossRefGoogle Scholar
  55. Treimer J, Zenk MH (1979b) Strictosidine synthase from cell cultures of Apocynaceae plants. Febs Lett 97:159–162.CrossRefGoogle Scholar
  56. Van der Krol AR, Lenting PE, Veenstra J, van der Meer I, Koes RE, Gerats AGM, Mol JNM, Stuitje AR (1988) An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869.CrossRefGoogle Scholar
  57. Van Sluys M, Tempé J (1989) Behavior of the maize transposable element Activator in Daucus carota. Mol Gen Genet 219:313–319.CrossRefGoogle Scholar
  58. Zenk MH, El-Shagi H, Arens H, Stöckigt J, Weiler EW, Deus B (1977) Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its bio-technological application, Springer, Berlin Heidelberg New York, pp 27–44.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • C. David
    • 1
  • J. Tempé
    • 1
    • 2
  1. 1.Institut des Sciences VégétalesCNRSGif sur YvetteFrance
  2. 2.Institut National Agronomique Paris GrignonParisFrance

Personalised recommendations