Advertisement

Hormonal Factors Which Regulate Bone Resorption

  • G. R. Mundy
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 107)

Abstract

The activity of bone cells is controlled by circulating systemic factors and by locally produced factors or cytokines. This distinction is not absolute, since some cytokines may circulate when produced in large amounts. The production of the three major systemic factors (parathyroid hormone, calcitonin, and 1, 25-dihydroxyvitamin D) is regulated by extracellular fluid calcium, and their primary role in maintenance of calcium homeostasis rather than control of bone cell function. Nevertheless, to maintain calcium homeostasis, bone cell function may be altered. In this chapter, the effects of these systemic factors on bone cell activity will be reviewed.

Keywords

Bone Resorption Parathyroid Hormone Osteoclastic Bone Resorption Organ Culture System Stimulate Bone Resorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe E, Miyaura C, Sakagami H, Takida M, Konno K, Yamazaki T, Yoshiki S, Suda T (1981) Differentiation of mouse myeloid leukemia cells induced by 1 alpha, 25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 78:4990-4994PubMedCrossRefGoogle Scholar
  2. Albright F, Bloomberg F, Smith PH (1940) Postmenopausal osteoporosis. Trans Assoc Am Physicians 55:298-305Google Scholar
  3. Ali NN, Chambers TJ (1983) The effect of prostaglandin I2 and ca-carba-PGI2 on the motility of isolated osteoclasts. Prostaglandins 25:603-614PubMedCrossRefGoogle Scholar
  4. Amento EP, Bhalla AK, Kurnick JT, Kradin RL, Clemens TL, Holick SA, Holick MR, Krane SM (1984) 1-Alpha 25-dihydroxyvitamin D3 induces maturation of the human monocyte cell line U937, and, in association with a factor from human T lymphocytes, augments production of the monokine, mononuclear cell factor. J Clin Invest 73:731-739PubMedCrossRefGoogle Scholar
  5. Askensai R, Demeester-Mirkine N (1975) Urinary excretion of hydroxylysyl glycosides and thyroid function. J Clin Endocrinol Metab 40:342-346CrossRefGoogle Scholar
  6. Au WYW (1975) Calcitonin treatment of hypercalcemia due to parathyroid carcinoma: synergistic effect of prednisone on long term treatment of hypercalcemia. Arch Intern Med 135:1594-1597PubMedCrossRefGoogle Scholar
  7. Barnicot NA (1948) The local action of the parathyroid and other tissues on the bone in intracerebral grafts. J Anat 82:233-248Google Scholar
  8. Baron R, Vignery A (1976) Changes in the osteoclastic pools and the osteoclast nuclei balance after a single injection of salmon calcitonin in the adult rat. In: Meunier PJ (ed) Bone histomorphometry. Armour Montagu, Paris, p 147Google Scholar
  9. Baxter JD, Bondy PK (1966) Hypercalcemia of thyrotoxicosis. Ann Intern Med 65:429-442PubMedGoogle Scholar
  10. Binstock ML, Mundy GR (1980) Effect of calcitonin and glucocorticoids in combination in malignant hypercalcemia. Ann Intern Med 93:269-272PubMedGoogle Scholar
  11. Boyde A (1981) Electron microscopy of the mineralizing front. In: Jee WS, Parfitt AM (eds) Bone histomorphometry. 3rd international workshop. Société Nouvelle de Publications Médicales et Dentaires, Paris, pp 69-78Google Scholar
  12. Brand JS, Raisz LG (1972) Effects of thyrocalcitonin and phosphate ion on the parathyroid hormone stimulated resorption of bone. Endocrinology 90:479-487PubMedCrossRefGoogle Scholar
  13. Burman KD, Monchik JM, Earll JM, Wartofsky L (1976) Ionized and total serum calcium and parathyroid hormone in hyperthyroidism. Ann Intern Med 84:668–671PubMedGoogle Scholar
  14. Burns DM, Forstrom JM, Friday KE, Howard GA, Roos BA (1989) Procalcitonin’s amino-terminal cleavage peptide is a bone-cell mitogen. Proc Natl Acad Sci USA 86:9519-9523PubMedCrossRefGoogle Scholar
  15. Canalis E, Centrella M, Burch W, McCarthy TL (1989) Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest 83:60-65PubMedCrossRefGoogle Scholar
  16. Catherwood BD (1985) 1,25-Dihydroxycholecalciferol and glucocorticosteroid regulation of adenylate cyclase in an osteoblast-like cells line. J Biol Chem 260:736-743PubMedGoogle Scholar
  17. Chambers TJ (1985) The pathobiology of the osteoclast. J Clin Pathol 38:241-252PubMedCrossRefGoogle Scholar
  18. Chambers TJ, Ali HN (1983) Inhibition of osteoclastic motility by prostaglandins I2, E1 E2 and 6-οxοE1. J Pathol 139:383-397PubMedCrossRefGoogle Scholar
  19. Chambers TJ, Moore A (1983) The sensitivity of isolated osteoclasts to morphological transformation by calcitonin. J Clin Endocrinol Metab 57:819–824PubMedCrossRefGoogle Scholar
  20. Chenu C, Pfeilschifter J, Mundy GR, Roodman GD (1988) Transforming growth factor ß inhibits formation of osteoclast-like cells in long-term human marrow cultures. Proc Natl Acad Sci USA 85:5683-5687PubMedCrossRefGoogle Scholar
  21. Christiansen C, Christiensen MS, McNair P, Hagen C, Stocklund KE, Transbol I (1980) Prevention of early postmenopausal bone loss: controlled 2-year study in 315 normal females. Eur J Clin Invest 10:273-279PubMedCrossRefGoogle Scholar
  22. Christiansen C, Christensen MS, Transbol I (1981) Bone mass in postmenopausal women after withdrawal of oestrogen/gestagen replacement therapy. Lancet i:459–461CrossRefGoogle Scholar
  23. Dietrich JW, Canalis EM, Maina DM, Raisz LG (1976a) Hormonal control of bone collagen synthesis in vitro: effects of parathyroid hormone and calcitonin. Endocrinology 98:943-949PubMedCrossRefGoogle Scholar
  24. Dietrich JW, Canalis EM, Maina DM, Raisz LG (1976b) Dual effect of glucocorticoids on bone collagen synthesis. Pharmacology 18:234-230Google Scholar
  25. Dietrich JW, Canalis EM, Maina DM, Raisz LG (1979a) Effects of glucocorticoids on fetal rat bone collagen synthesis in vitro. Endocrinology 104:715-721PubMedCrossRefGoogle Scholar
  26. Dietrich JW, Mundy GR, Raisz LG (1979b) Inhibition of bone resorption in tissue culture by membrane-stabilizing drugs. Endocrinology 104:1644-1648PubMedCrossRefGoogle Scholar
  27. Dodd RC, Cohen MS, Newman SL, Gray TK (1983) Vitamin D metabolites change the phenotype of monoblastic U937 cells. Proc Natl Acad Sci USA 80:7538–7541PubMedCrossRefGoogle Scholar
  28. D’Souza SM, MacIntyre I, Girgis SI, Mundy GR (1986) Human synthetic calcitonin- gene related peptide inhibits bone resorption in vitro. Endocrinology 119:58-61PubMedCrossRefGoogle Scholar
  29. Dunlay R, Civitelli R, Miyauchi A, Dobre CV, Gupta A, Goligorsky M, Hruska K (1990) Parathyroid hormone receptor coupling to phospholipase C is an alternate pathway of signal transduction in the bone and kidney. In: Cohn DV, Glorieux FH, Martin TJ (eds) Calcium regulation and bone metabolism, vol 10. Excerpta Medica, Amsterdam, pp 24-32Google Scholar
  30. Eilon G, Raisz LG (1978) Comparison of the effects of stimulators and inhibitors of resorption on the release of lysosomal enzymes and radioactive calcium from fetal bone in organ culture. Endocrinology 103:1969-1975PubMedCrossRefGoogle Scholar
  31. Erikssen EF, Colvard DS, Berg NJ (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84-86CrossRefGoogle Scholar
  32. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889-895PubMedCrossRefGoogle Scholar
  33. Farley JR, Tarbaux NM, Hall SL, Linkhart TA, Baylink DJ (1988) The anti-bone resorptive agent calcitonin also acts in vitro to directly increase bone formation and bone cell proliferation. Endocrinology 123:159-167PubMedCrossRefGoogle Scholar
  34. Farnsworth AW, Dobyns BM (1974) Hypercalcemia and thyrotoxicosis. Med J Aust 2:782-784PubMedGoogle Scholar
  35. Fetchick DA, Bertolini DR, Sarin P, Weintraub ST, Mundy GR, Dunn JF (1986) Production of 1,25 dihydroxyvitamin D by human T-cell lymphotrophic virus-I transformed lymphocytes. J Clin Invest 78:592-596PubMedCrossRefGoogle Scholar
  36. Findlay DM, Michelangeli VP, Orlowski RC, Martin TJ (1983) Biological activities and receptor interactions of des-Leu16 Salmon and des-Phe16 human calcitonin. Endocrinology 112:1288-1291PubMedCrossRefGoogle Scholar
  37. Follis RH (1953) Skeletal changes associated with hyperthyroidism. Bull Johns Hopkins Hosp 92:405-421PubMedGoogle Scholar
  38. Forrest SM, Ng KW, Findlay DM, Michelangeli VP, Livesey SA, Partridge NC, Zajac JD, Martin TJ (1985) Characterization of an osteoblast-like clonal cell line which responds to both parathyroid hormone and calcitonin. Calcif Tissue Int 37:51-56PubMedCrossRefGoogle Scholar
  39. Friedman J, Au WYW, Raisz LG (1968) Responses of fetal rat bone to thyrocalcitonin in tissue culture. Endocrinology 82:149-156PubMedCrossRefGoogle Scholar
  40. Fritzel D, Malleson A, Marks V (1967) Plasma levels of ionized calcium and magnesium in thyroid disease. Lancet 1:1360-1361CrossRefGoogle Scholar
  41. Gaillard PJ (1961) Parathyroid and bone tissue in culture. In: Greep RO, Talmage RV (eds) The parathyroids. Thomas, Springfield, p 20Google Scholar
  42. Garabedian M, Tanaka Y, Holick MF, DeLuca HF (1974) Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomised rats. Endocrinology 94:1022-1027PubMedCrossRefGoogle Scholar
  43. Girasole G, Wang JM, Pedrazzoni M, Pioli G, Balotta C, Passeri M, Lazzarin A, Ridolfo A, Mantovani A (1990) Augmentation of monocyte chemotaxis by 1 alpha, 25-dihydroxyvitamin D3. Stimulation of defective migration of AIDS patiens. J Immunol 145:2459-2464PubMedGoogle Scholar
  44. Gray TK, Mohan S, Linkhart TA, Baylink DJ (1989) Estradiol stimulates in vitro the secretion of insulin-like growth factors by the clonal osteoblastic cell line, UMR-106. Biochem Biophys Res Commun 158:407-412PubMedCrossRefGoogle Scholar
  45. Greenberg C, Kirkreja SC, Bowser EN, Hargis GK, Henderson WT, Williams GA (1990) Effect of estradiol and progesterone on calcium secretion. Endocrinology 118:2594-2598CrossRefGoogle Scholar
  46. Gunness-Hey M, Hock JM (1984) Increased trabecular bone mass in rats treated with human synthetic parathyroid hormone. Metab Bone Dis Rel Res 5:177–181CrossRefGoogle Scholar
  47. Gutierrez GE, Mundy GR, Katz MS (1984) Adenylate cyclase of osteoblast-like cells from rat osteosarcoma is stimulated by calcitonin as well as parathyroid hormone. Endocrinology 115:2342-2346PubMedCrossRefGoogle Scholar
  48. Hakeda Y, Hiura K, Sato T, Okazaki R, Matsumoto T, Ogata E, Ishitani R, Kumegawa M (1989) Existence of parathyroid hormone binding sites on murine hemopoietic blast cells. Biochem Biophys Res Commun 163:1481-1486PubMedCrossRefGoogle Scholar
  49. Hamilton JA, Lingelbach S, Partridge NC, Martin TJ (1985) Regulation of plasminogen activator production by bone-resorbing hormones in normal and malignant osteoblasts. Endocrinology 116:2186-2191PubMedCrossRefGoogle Scholar
  50. Harms HM, Kaptaina U, Kulpmann WR, Brabant G, Hesch RD (1989) Pulse amplitude and frequency modulation of parathyroid hormone in plasma. J Clin Endocrinol Metab 69:843-851PubMedCrossRefGoogle Scholar
  51. Haussier MR, Mangelsdorf DJ, Komm BS (1987) Molecular biology of the vitamin D hormone. In: Cohn DV, Martin TJ, Meunier PJ (eds) Calcium regulation and bone metabolism, vol 9. Excerpta Medica, Amsterdam, pp 465-474Google Scholar
  52. Haussier MR, Mangelsdorf DJ, Komm BS, Terpening CM, Yamaoka K, Allegretto EA, Baker AR, Shine J, McDonnell DP, Hughes M (1988) Molecular biology of the vitamin D hormone. Recent Prog Horm Res 44:263-305Google Scholar
  53. Heaney RP (1965) A unified concept of osteoporosis. Am J Med 39:377-380CrossRefGoogle Scholar
  54. Heaney RP, Recker RR, Saville PD (1977) Calcium balance and calcium requirements in middle-aged women. Am J Clin Nutr 30:1603-1611PubMedGoogle Scholar
  55. Heaney RP, Becker RR, Saville PD (1978a) Menopausal changes in calcium balance performance. J Lab Clin Med 92:953-963PubMedGoogle Scholar
  56. Heaney RP, Becker RR, Saville PD (1978b) Menopausal changes in bone remodeling. J Lab Clin Med 92:964-970PubMedGoogle Scholar
  57. Heersche JNM (1978) Mechanism of osteoclastic bone resorption. A new hypothesis. Calcif Tissue Res 26:81-84PubMedCrossRefGoogle Scholar
  58. Hendy GN, O’Riordan JLH (1984) The genes that control calcium homeostasis. Clin Endocrinol 21:465-470CrossRefGoogle Scholar
  59. Holtrop ME, Raisz LG (1979) Comparison of the effects of 1,25 dihydroxycholecalciferol, prostaglandin E2, and osteoclast activating factor with parathyroid hormone on the ultrastructure of osteoclast cultured long bones of rats. Calcif Tissue Int 29:201-206PubMedCrossRefGoogle Scholar
  60. Holtrop ME, Raisz LG, Simmons HA (1974) The effects of parathyroid hormone, colchicine and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol 60:346-355PubMedCrossRefGoogle Scholar
  61. Horsman A, Gallagher JC, Simpson M, Nordin BEC (1977) Prospective trial of estrogen and calcium in postmenopausal women. Br Med J ii:789–792CrossRefGoogle Scholar
  62. Hosomi J, Hosoi J, Abe E, Suda T, Kuroki T (1983) Regulation of terminal differentiation of cultured mouse epidermal cells by la,25-dihydroxy vitamin D3. Endocrinology 3:1950-1957CrossRefGoogle Scholar
  63. Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ (1981) Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence a coupling mechanism. Proc Natl Acad Sci USA 78:3204-3208PubMedCrossRefGoogle Scholar
  64. Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, O’Malley BW (1988) Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets. Science 242:1702-1705PubMedCrossRefGoogle Scholar
  65. Ibbotson KJ, Roodman GD, McManus LM, Mundy GR (1984) Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol 99:471-480PubMedCrossRefGoogle Scholar
  66. Ishizuka S, Norman AW (1986) The difference of biological activity among four diastereoisomers of la,25-dihydroxyvitamin D3-26, 23-lactone. J Steroid Biochem 25:505-510PubMedCrossRefGoogle Scholar
  67. Ishizuka S, Norman AW (1987) Metabolic pathways from lα,25-dihydroxyvitamin D3 to la,25-dihydroxyvitamin D3-26, 23-lactone. J Biol Chem 262:7165-7170PubMedGoogle Scholar
  68. Ishizuka S, Ishimoto S, Norman AW (1984) Biological activity assessment of la,25- dihydroxyvitamin D3-26, 23-lactone in the rat. J Steroid Biochem 20:611-616PubMedCrossRefGoogle Scholar
  69. Ishizuka S, Oshida J, Tsuruta H, Norman AW (1985a) The steriochemical configuration of the natural lα,25-dihydroxyvitamin D3-26, 23-lactone. Arch Biochem Biophys 242:82-89PubMedCrossRefGoogle Scholar
  70. Ishizuka S, Kiyoki M, Orimo H (1985b) Biological activity and characteristics of la, 25(OH)2D3-26, 23-lactone. In: Norman AW, Schaefer K, Grigoleit HG, Herrath DV (eds) Vitamin D: chemical, biochemical and clinical update, de Gruyter, Berlin, pp 402-403Google Scholar
  71. Ishizuka S, Kurihara N, Hakeda Y, Maeda N, Ikeda K, Kumegawa M, Norman AW (1988) lα,25-Dihydroxyvitamin D3 [lα,25-(OH)2D3]-26,23-lactone inhibits 1,25- (OH)2D3-mediated fusion of mouse bone marrow mononuclear cells. Endocrinology 123:781-786PubMedCrossRefGoogle Scholar
  72. Jones SJ, Boyde A (1978) Scanning electron microscopy of bone cells in culture. In: Copp DH, Talmage RV (eds) Endocrinology of calcium metabolism. Excerpta Medica, Amsterdam, p 97Google Scholar
  73. Jones SJ, Boyde A, Ali NN, Maconnachie E (1985) A review of bone cell and substratum interactions. Scanning Microsc 7:5-24Google Scholar
  74. Kalu DN, Doyle FH, Pennock J, Doyle FH, Foster GV (1970) Parathyroid hormone and experimental osteosclerosis. Lancet 1:1363-1366PubMedCrossRefGoogle Scholar
  75. Key L, Carnes D, Cole S, Holtrop M, Bar-Shavit Z, Shapiro F, Arceci R, Steinberg J, Gundberg C, Kahn A, Teitelbaum S, Anast C (1984) Treatment of congenital osteopetrosis with high dose calcitriol. N Engl J Med 310:410-415CrossRefGoogle Scholar
  76. Kimberg DV, Baerg RD, Gershon E, Graudusius RT (1971) Effect of cortisone treatment on the active transport of calcium by the small intestine. J Clin Invest 50:1309-1321PubMedCrossRefGoogle Scholar
  77. Kitamura N, Shigeno C, Shiomi K, Lee KC, Ohta S, Sone T, Katsushima S, Tadamura E, Kousaka T, Yamamoto I, Dokoh S, Konishi J (1990) Episodic fluctuation in serum intact parathyroid hormone concentration in men. J Clin Endocrinol Metab 70:252-263PubMedCrossRefGoogle Scholar
  78. Kivirikko KT, Laitinen O, Lamberg BA (1965) Value of urine and serum hydroxyproline in the diagnosis of thyroid disease. J Clin Endocrinol Metab 25:1347-1352PubMedCrossRefGoogle Scholar
  79. Kiyoki M, Kurihara N, Ishizuka S, Ishii S, Hakeda Y, Kumegawa M, Norman AW (1985) The unique action for bone metabolism of la, 26-23-lactone. Biochem Biophys Res Commun 127:693-698PubMedCrossRefGoogle Scholar
  80. Komm BS, Terpening CM, Benz DJ (1988) Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 241:81-84PubMedCrossRefGoogle Scholar
  81. Koopmans SJ, Krans HMJ, van der Pluim G, Lowik C (1990) Pancreatic amylin induces hypocalcemia and antagonizes insulin action on carbohydrate metabolism in the rat. J Bone Miner Res 5 [Suppl]:477Google Scholar
  82. Krane SM, Brownell GL, Skanbury JB, Corrigon H (1956) The effect of thyroid disease on calcium metabolism in man. J Clin Invest 35:874-887PubMedCrossRefGoogle Scholar
  83. Krieger NS, Tashjian AH (1981) Inhibition of ouabain of parathyroid hormone stimulated bone resorption. J Pharmacol Exp Ther 217:586-591PubMedGoogle Scholar
  84. Kubota M, Ng KW, Martin TJ (1985) Effect of 1,25 dihydroxyvitamin D3 on cyclic AMP responses to hormones in clonal osteogenic sarcoma cells. Biochem J 231:11-17PubMedGoogle Scholar
  85. Kurihara N, Ishizuka S, Kumegawa M, Mundy GR, Roodman GR (1989) 23(S) 25(R)-l,25(OH)2D3-26,23-lactone, (l,25D-lactone) which is present in normal serum is an inhibitor of osteoclast-like cells (OCL) formation in human bone marrow cultures. Clin Res 37:454AGoogle Scholar
  86. Kurihara N, Chenu C, Miller M, Civin C, Roodman GD (1990) Identification of committed mononuclear precursors for osteoclast-like cells formed in long term human marrow cultures. Endocrinology 126:2733-2741PubMedCrossRefGoogle Scholar
  87. Kurihara N, Civin C, Roodman GD (1991) Osteotropic factor responsiveness of highly purified populations of early and late precursors for human multinucleated cells expressing the osteoclast phenotype. J Bone Miner Res 6:257-261PubMedCrossRefGoogle Scholar
  88. Lindsay R, Aitken JM, Anderson JB, Hart DMM, MacDonald EB, Clarke AC (1976) Long-term prevention of postmenopausal osteoporosis by oestrogen. Lancet i: 1038-1040CrossRefGoogle Scholar
  89. Lindsay R, Hart DM, Purdie D, Ferguson MM, Clark AS, Kraszewski A (1978) Comparative effects of oestrogen and a progestogen on bone loss in postmenopausal women. Clin Sci 54:193-195Google Scholar
  90. Lindsay R, Hart DM, Forrest G, Baird C (1980) Prevention of spinal osteoporosis in oophorectomised women. Lancet ii: 1151-1154CrossRefGoogle Scholar
  91. Lorenzo JA, Quinton J (1984) Epidermal growth factor enhances the resorptive response to parathyroid hormone. Calcif Tissue Int 36:465Google Scholar
  92. Lorenzo JA, Raisz LG, Hock JM (1983) DNA synthesis is not necessary for osteoclastic responses to parathyroid hormone in cultured fetal rat long bones. J Clin Invest 72:1924-1929PubMedCrossRefGoogle Scholar
  93. Luben RA, Goggins JF, Raisz LG (1974) Stimulation by parathyroid hormone of bone hyaluronate synthesis in organ culture. Endocrinology 94:737-745PubMedCrossRefGoogle Scholar
  94. MacDonald BR, Mundy GR, Clark S, Wang EA, Kuehl TJ, Stanley ER, Roodman GD (1986) Effects of human recombinant CSF-GM and highly purified CSF-1 on the formation of multinucleated cells with osteoclast characteristics in long term bone marrow cultures. J Bone Miner Res 1:227-233PubMedCrossRefGoogle Scholar
  95. Manolagas SC, Burton DW, Deftos LJ (1981) 1,25-Dihydroxyvitamin D3 stimulates the alkaline phosphatase activity of osteoblast-like cells. J Biol Chem 256:7115–7117PubMedGoogle Scholar
  96. Manolagas SC, Provvedini DM, Tsoukas C (1985) Interactions of 1,25 dihydroxyvitamin D3 and the immune system. Mol Cell Endocrinol 43:113-122PubMedCrossRefGoogle Scholar
  97. Marx SJ, Woodard C, Aurbach GD, Glossmann H, Keutmann HT (1973) Renal receptors for calcitonin: binding and degradation of hormone. J Biol Chem 248:4797-4802PubMedGoogle Scholar
  98. McDonnell DP, Pike JW, O’Malley BW (1988) The vitamin D receptor: a primitive steroid receptor related to thyroid hormone receptor. J Steroid Biochem 30:41–46PubMedCrossRefGoogle Scholar
  99. McSheehy PMJ, Chambers TJ (1986) Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology 118:824-828PubMedCrossRefGoogle Scholar
  100. McSheehy PMJ, Chambers TJ (1987) 1,25 Dihydroxyvitamin D3 stimulates rat osteoblastic cells to release a soluble factor that increases osteoclastic bone resorption. J Clin Invest 80:425-429PubMedCrossRefGoogle Scholar
  101. Merke J, Klaus G, Hugel U, Waldherr R, Ritz E (1986) No 1,25 dihydroxyvitamin D3 receptors on osteoclasts of calcium-deficient chicken despite demonstrable receptors on circulating monocytes. J Clin Invest 77:312-314PubMedCrossRefGoogle Scholar
  102. Meunier PJ, Bianchi GGS, Edouard CM, Bernard JC, Courpron P, Vignon GE (1972) Bony manifestations of thyrotoxicosis. Orthop Clin North Am 3:745-774Google Scholar
  103. Mitchell J, Rouleau MF, Goltzman D (1990) Biochemical and morphological characterization of parathyroid hormone receptor binding to the rat osteosarcoma cell line UMR-106. Endocrinology 126:2327-2335PubMedCrossRefGoogle Scholar
  104. Miyaura C, Abe E, Nomura H, Hishii Y, Suda T (1982) 1 Alpha, 25- dihydroxyvitamin D3 suppresses proliferation of murine granulocyte- macrophage progenitor cells (CFU-C). Biochem Biophys Res Commun 108:1728-1733PubMedCrossRefGoogle Scholar
  105. Morimoto S, Onishi T, Imanaka S, Yukawa H, Kozuka T, Kitano Y, Yoshikawa K, Kumahara Y (1986) Topical administration of 1,25 dihydroxyvitamin D3 for psoriasis: report of five cases. Calcif Tissue Int 38:119-122PubMedCrossRefGoogle Scholar
  106. Mosekilde L, Meisen F (1978) Morphometrie and dynamic studies of bone changes in hypothyroidism. Acta Pathol Microbiol Scand 86:56-62Google Scholar
  107. Mundy GR, Martin TJ (1982) The hypercalcemia of malignancy: pathogenesis and management. Metabolism 31:1247-1277PubMedCrossRefGoogle Scholar
  108. Mundy GR, Roodman GD (1987) Osteoclast ontogeny and function. In: Peck WA (ed) Bone and mineral research, vol V. Elsevier, Amsterdam, pp 209-280Google Scholar
  109. Mundy GR, Shapiro JL, Bandelin JC, Canalis EM, Raisz LG (1976) Direct stimulation of bone resorption by thyroid hormones. J Clin Invest 58:529-534PubMedCrossRefGoogle Scholar
  110. Nicholson GC, Moseley JM, Sexton PM, Mendelsohn FAO, Martin TJ (1986) Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J Clin Invest 78:355-360PubMedCrossRefGoogle Scholar
  111. Nicholson GC, Moseley JM, Sexton PM, Martin TJ (1987) Chicken osteoclasts do not possess calcitonin receptors. J Bone Miner Res 2:53-59PubMedCrossRefGoogle Scholar
  112. Oursler MJ, Pyfferoen J, Osdoby P, Riggs BL, Speisberg TC (1990) Osteoclasts express mRNA for estrogen receptor. J Bone Miner Res 5:517CrossRefGoogle Scholar
  113. Pacifici R, Rifas L, Teitelbaum S, Slatopolsky E, McCracken R, Bergfeld M, Lee W, Avioli LV, Peck WA (1987) Spontaneous release of interleukin-1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci USA 84:4616-4620PubMedCrossRefGoogle Scholar
  114. Pacifici R, Rifas L, McCracken R, Vered I, McMurty C, Avioli L, Peck WA (1989) Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin-1 release. Proc Natl Acad Sci USA 86:2398-2402PubMedCrossRefGoogle Scholar
  115. Parfitt AM (1976a) The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease: I. Mechanisms of calcium transfer between blood and bone and their cellular basis: morphological and kinetic approaches to bone turnover. Metabolism 25:809–844PubMedCrossRefGoogle Scholar
  116. Parfitt AM (1976b) The actions of parathyroid hormone on bone. Relation to bone remodeling and turnover, calcium homeostasis and metabolic bone disease: II. PTH and bone cells: bone turnover and plasma calcium regulation. Metabolism 25:909-955PubMedCrossRefGoogle Scholar
  117. Parfitt AM (1979) Equilibrium and disequilibrium hypercalcemia: new light on an old concept. Metab Bone Dis Relat Res 1:279-293CrossRefGoogle Scholar
  118. Parfitt AM (1987) Bone and plasma calcium homeostasis. Bone 1:51-58Google Scholar
  119. Parfitt AM (1989) Plasma calcium control at quiescent bone surfaces: a new approach to the homeostatic function of bone lining cells. Bone 10:87-88PubMedCrossRefGoogle Scholar
  120. Parsons JA, Potts JT (1972) Physiology and chemistry of parathyroid hormone. Clin Endocrinol Metab 1:33-78CrossRefGoogle Scholar
  121. Peck WA (1979) Cyclic AMP as a second messenger in the skeletal actions of parathyroid hormone: a decade-old hypothesis. Calcif Tissue Int 29:1-4PubMedCrossRefGoogle Scholar
  122. Perry HM, Dunn J, Chappel JC, Kahn AJ, Teitelbaum SL (1984) Partial characterization of a parathyroid hormone stimulated osteoblast produced resorptive factor. Calcif Tissue Int 36:468Google Scholar
  123. Pfeilschifter J, Mundy GR (1987) Modulation of transforming growth factor beta activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci USA 84:2024-2028PubMedCrossRefGoogle Scholar
  124. Pfeilschifter JP, Seyedin S, Mundy GR (1988) Transforming growth factor ß inhibits bone resorption in fetal rat long bone cultures. J Clin Invest 82:680-685PubMedCrossRefGoogle Scholar
  125. Posen S, Cornish C, Kleerekoper M (1977) Alkaline phosphatase and metabolic bone disorders. In: Avioli LV, Krane SM Metabolic bone disease, vol 1. Academic, New York, p 142Google Scholar
  126. Price PA, Baukol SA (1980) 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J Biol Chem 255:11660-11663PubMedGoogle Scholar
  127. Prowedini DM, Tsoukas CD, Deftos LJ, Manolagas SC (1983) 1,25 Dihydroxyvitamin D3 receptors in human leukocytes. Science 221:1181-1183CrossRefGoogle Scholar
  128. Raisz LG (1965) Bone resorption in tissue culture. Factors influencing the response to parathyroid hormone. J Clin Invest 44:103-116PubMedCrossRefGoogle Scholar
  129. Raisz LG (1970) Physiologic and pharmacologic regulation of bone resorption. N Eng J Med 282:909-916CrossRefGoogle Scholar
  130. Raisz LG, Niemann I (1967) Early effects of parathyroid hormone and thyrocalcitonin on bone in organ culture. Nature 214:486-487PubMedCrossRefGoogle Scholar
  131. Raisz LG, Niemann I (1969) Effects of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology 85:446-452PubMedCrossRefGoogle Scholar
  132. Raisz LG, Trummel CL, Simmons H (1972a) Induction of bone resorption in tissue culture: prolonged response after brief exposure to parathyroid hormone or 25-hydroxycholecalciferol. Endocrinology 90:744-751PubMedCrossRefGoogle Scholar
  133. Raisz LG, Trummel CL, Wener JA, Simmons H (1972b) Effect of glucocorticoids on bone resorption in tissue culture. Endocrinology 90:961-967PubMedCrossRefGoogle Scholar
  134. Raisz LG, Trummel CL, Holick MF, DeLuca HF (1972c) 1,25 Dihydroxy- cholecalciferol: a potent stimulator of bone resorption in tissue culture. Science 175:768-769PubMedCrossRefGoogle Scholar
  135. Raisz LG, Simmons HA, Vargas SJ, Kemp BE, Martin TJ (1990) Comparison of the effects of amino-terminal synthetic parathyroid hormone-related peptide (PTH- rP) of malignancy and parathyroid hormone on resorption of cultured fetal rat long bones. Calcif Tissue Int 46:233-238PubMedCrossRefGoogle Scholar
  136. Recker RR, Saville PD, Heaney RP (1977) The effect of estrogens and calcium carbonate on bone loss in postmenopausal women. Ann Intern Med 87:649-655PubMedGoogle Scholar
  137. Reeve J, Meunier PJ, Parsons JA, Bernât M, Bijvoet OLM, Courpron P, Edouard C, Klenerman L, Neer RM, Renier JC, Slovik D, Vismans FJFE, Potts JT (1980) Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicentre trial. Br Med J 280:1340-1344PubMedCrossRefGoogle Scholar
  138. Reeve J, Davies U, Arlot M, Bradbeer JN, Green JR, Hesp R, Edouard C, Hulme P, Podbesek RD, Katz D, Zanelli JM, Meunier PJ (1989) Parathyroid peptide (hPTH 1-34) in the treatment of osteoporosis. In: Kleerekoper M, Krane SM (eds) Clinical disorders of bone and mineral metabolism. Liebert, New York, pp 621-627Google Scholar
  139. Reid IR, Katz JM, Ibbertson HK, Gray DH (1986) The APD, on bone resorption in neonatal mouse calvaria. Calcif Tissue Int 38:38-43PubMedCrossRefGoogle Scholar
  140. Reitsma PH, Rothbert PG, Astria SM, Trial J, Bar-Shavit Z, Hall A, Teitelbaum SL, Kahn AJ (1983) Regulation of myc gene expression in HL-50 leukaemia cells by a vitamin D metabolite. Nature 306:492-494PubMedCrossRefGoogle Scholar
  141. Rigby WFC, Stacy T, Fanger MW (1984) Inhibition of T lymphocyte mitogenesis by 1.25 dihydroxyvitamin D3 (Calcitriol). J Clin Invest 74:1451-1455PubMedCrossRefGoogle Scholar
  142. Riggs BL, Melton LJ (1990) Clinical review 8 - clinical heterogeneity of involutional osteoporosis - implications for preventive therapy. J Clin Endocrinol Metab 70:1229-1232PubMedCrossRefGoogle Scholar
  143. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest 67:328–335PubMedCrossRefGoogle Scholar
  144. Riggs BL, Hodgson SF, O’Fallon WM, Chao EYS, Wahner HW, Muhs JM, Cedel SL, Melton LJ (1990) Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 322:802-809PubMedCrossRefGoogle Scholar
  145. Riis BJ, Thomsen K, Strom V, Christiansen C (1987) The effect of percutaneous estradiol and natural progesterone on postmenopausal bone loss. Am J Obstet Gynecol 156:61-65PubMedGoogle Scholar
  146. Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption - a hypothesis. Calcif Tissue Int 33:349-351PubMedCrossRefGoogle Scholar
  147. Rodan GA, Rodan SB (1984) Expression of the osteoblastic phenotype. In: Peck WA (ed) Bone and mineral research, vol 2. Elsevier, Amsterdam, p 244Google Scholar
  148. Roodman GD, Ibbotson KJ, MacDonald BR, Kuehl TJ, Mundy GR (1985) 1,25 Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci USA 82:8213-8217PubMedCrossRefGoogle Scholar
  149. Roos BA, Fisher JA, Pignat W, Alander CB, Raisz LG (1986) Evaluation of the in vivo and in vitro calcium regulating actions of noncalcitonin peptides produced via calcitonin gene expression. Endocrinology 118:46–51PubMedCrossRefGoogle Scholar
  150. Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RW (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129-135PubMedCrossRefGoogle Scholar
  151. Rouleau MF, Mitchell J, Goltzman D (1988) In vivo distribution of parathyroid hormone receptors in bone: evidence that a predominant osseous target cell is not the mature osteoblast. Endocrinology 123:187-191PubMedCrossRefGoogle Scholar
  152. Rude RK, Oldham SB, Singer FR, Nicholoff JT (1976) Treatment of thyrotoxic hypercalcemia with propranolol. N Engl J Med 294:431-433PubMedCrossRefGoogle Scholar
  153. Sabatini M, Yates AJ, Garrett R, Chavez J, Dunn J, Bonewald L, Mundy GR (1990) Increased production of tumor necrosis factor by normal immune cells in a model of the humoral hypercalcemia of malignancy. Lab Invest 63:676-681PubMedGoogle Scholar
  154. Sakamoto S, Sakamoto M (1982) Biochemical and immunohistochemical studies on collagenase in resorbing bone in tissue culture. A novel hypothesis for the mechanism of bone resorption. J Periodont Res 17:523-526PubMedCrossRefGoogle Scholar
  155. Sato K, Fujii Y, Kasono K, Ozawa M, Imamura H, Kanaji Y, Kurosawa H, Tsushima T, Shizume K (1989) Parathyroid hormone-related protein and interleukin-la synergistically stimulate bone resorption in vitro and increase the serum calcium concentration in mice in vivo. Endocrinology 124:2172-2178PubMedCrossRefGoogle Scholar
  156. Slatopolsky E, Weerts C, Thielan J, Horst R, Harter H, Martin KJ (1984) Marked suppression of secondary hyperparathyroidism by intravenous administration of 1.25 dihydroxycholecalciferol in uremic patients. J Clin Invest 74:2136-2143PubMedCrossRefGoogle Scholar
  157. Slemenda C, Hui SL, Longcope C, Johnston CC (1987) Sex steroids and bone mass: a study of changes about the time of the menopause. J Clin Invest 80:1261-1269PubMedCrossRefGoogle Scholar
  158. Slovik DM, Rosenthal DI, Doppelt SH, Potts JT, Campbell JA, Neer RM (1986) Restoration of spinal bone in osteoporotic men by treatment with human parathyroid hormone (1-34) and 1,25-dihydroxyvitamin D. J Bone Miner Res 1:377-381PubMedCrossRefGoogle Scholar
  159. Stashenko P, Dewhirst FE, Peros WJ, Kent RL, Ago JM (1987) Synergistic interactions between interleukin-1, tumor necrosis factor, and lymphotoxin in bone resorption. J Immunol 138:1464-1468PubMedGoogle Scholar
  160. Stern PH (1980) The vitamin-D and bone. Pharmacol Rev 32:47-80PubMedGoogle Scholar
  161. Stern PH, Halloran BP, DeLuca HF, Hefley TJ (1983) Responsiveness of vitamin D deficient fetal rat limb bones to parathyroid hormone in culture. Am J Physiol 244:E421PubMedGoogle Scholar
  162. Stern PH, Horst RL, Gardner R, Napoli JL (1985) 10-Keto or 25-hydroxy substitution confer equivalent in vitro bone resorbing activity to vitamin D3. Arch Biochem Biophys 236:555-558PubMedCrossRefGoogle Scholar
  163. Stevenson JC, Abeyasekera G, Hillyard CJ (1983) Regulation of calcium-regulating hormones by exogenous sex steroids in early postmenopause. Eur J Clin Invest 13:481-487PubMedCrossRefGoogle Scholar
  164. Stevenson JC, Lee B, Devenport M, Cust MP, Ganger KF (1989) Determinants of bone density in normal women: risk factors for future osteoporosis? Br Med J 298:924-928CrossRefGoogle Scholar
  165. Strumpf M, Kowalski MA, Mundy GR (1978) Effects of glucocorticoids on osteoclast-activating factor. J Lab Clin Med 92:772-778PubMedGoogle Scholar
  166. Struthers AD, Brown MJ, Beecham JL, Morris HR, MacIntyre I, Stevenson JC (1985) The acute effect of human calcitonin-gene related peptide in man. J Endocrinol 104 [Suppl]:225CrossRefGoogle Scholar
  167. Suda T, Testa NG, Allen TD (1983) Effects of hydrocortisone on osteoclasts generated in cat bone marrow cultures. Calcif Tissue Int 35:82-86PubMedCrossRefGoogle Scholar
  168. Tam CS, Heersche JNM, Murray TM, Parsons JA (1982) Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology 110:506-512PubMedCrossRefGoogle Scholar
  169. Tashjian AJ, Wright DR, Ivey JL, Pont A (1978) Calcitonin binding sites in bone: relationships to biological response and escape. Recent Prog Hormon Res 34:285-334Google Scholar
  170. Teitelbaum SL, Kahn AJ (1980) Mononuclear phagocytes, osteoclasts and bone resorption. Miner Electrolyte Metab 3:2-9Google Scholar
  171. Teitelbaum SL, Malone JD, Kahn AJ (1981) Glucocorticoid enhancement of bone resorption by rat peritoneal macrophages in vitro. Endocrinology 108:795-799PubMedCrossRefGoogle Scholar
  172. Teti A, Rizzoli R, Zambonin-Zallone A (1991) Parathyroid hormone binding to cultured avian osteoclasts. Biochem Biophys Res Commun 174:1217-1222PubMedCrossRefGoogle Scholar
  173. Tippins JR, Morris HR, Panico M, Etienne T, Bevis P, Girgis S, MacIntyre I, Azria M, Attingner M (1984) The myotropic and plasma calcium modulating effects of calcitonin gene-related peptide (CGRP). Neuropeptides 4:425-434PubMedCrossRefGoogle Scholar
  174. Tsoukas CD, Provvedini DM, Manolagas SC (1984) 1,25 Dihydroxyvitamin D3: a novel immunoregulatory hormone. Science 224:1438-1440PubMedCrossRefGoogle Scholar
  175. Underwood JL, DeLuca HF (1984) Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol 246:E493-E498PubMedGoogle Scholar
  176. Vaes G (1968) On the mechanism of bone resorption. The action of parathyroid hormone on the excretion and synthesis on the lysosomal enzymes and on the extracellular release of acid by bone cells. J Cell Biol 39:676-697PubMedCrossRefGoogle Scholar
  177. Wener JA, Gorton SJ, Raisz LG (1972) Escape from inhibition of resorption in cultures of fetal bone treated with calcitonin and parathyroid hormone. Endocrinology 90:752-759PubMedCrossRefGoogle Scholar
  178. Yamamoto M, Kawanobe Y, Takahashi H, Shimazawa E, Kimura S, Ogata E (1984) Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest 74:507-513PubMedCrossRefGoogle Scholar
  179. Yates AJP, Gutierrez GE, Smolens P, Travis PS, Katz MS, Aufdemorte TB, Boyce BF, Hymer TK, Poser JW, Mundy GR (1988) Effects of a synthetic peptide of a parathyroid hormone-related protein on calcium homeostasis, renal tubular calcium reabsorption and bone metabolism. J Clin Invest 81:932-938PubMedCrossRefGoogle Scholar
  180. Yates AJP, Oreffo ROC, Mayor K, Mundy GR (1991) Inhibition of bone resorption by inorganic phosphate is mediated both by reduced osteoclast formation and by impaired activity of mature osteoclasts. J Bone Miner Res 6:473-468PubMedCrossRefGoogle Scholar
  181. Yoneda T, Alsina MM, Garcia JL, Mundy GR (1991) Differentiation of HL-60 cells into cells with the osteoclast phenotype. Endocrinology 129:683-689PubMedCrossRefGoogle Scholar
  182. Zaidi M, Moonga BS, Ghatei MA, Gilbey S, Wimalawansa SJ, Bloom SR, MacIntyre I, Datta HK (1990) Amylin: a new bone-conserving hormone from the pancreas: in vivo and in vitro studies on potency and mode of action. J Bone Miner Res 5 [Suppl]:9Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. R. Mundy

There are no affiliations available

Personalised recommendations