Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 107))

Abstract

The osteoclast is the cell responsible for the resorption of the extracellular bone matrix. Under physiological conditions, bone resorption plays an essential role in the homeostasis of both the skeleton and serum calcium. This cellular process is also essential in the growth and remodeling of bone, where it is tightly coupled to the process of bone formation by the osteoblast. It is the integrated functions of these two cell types that lead to the quantitative and qualitative maintenance of the skeleton, to the changes in size and shape of the individual bones during growth, and to bone repair after trauma or fracture. On the other hand, it is the disruption of the coupling between bone resorption and formation that leads to abnormally dense (osteopetrosis and osteosclerosis) or porous bone (osteoporosis). A coupled but high resorption rate characterizes high bone-turnover diseases, such as hyperparathyroidism or Paget’s disease, and leads to the disruption of the architecture and function of the skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Awqati Q (1986) Proton-translocating ATPases. Cell Biol 2:179–199

    Article  CAS  Google Scholar 

  • Ali NN, Boyde A, Jones SJ (1984) Motility and resorption: osteoclastic activity in vitro. Anat Embryol (Berl) 170:51–56

    Article  CAS  Google Scholar 

  • Andersson RE, Woodbury DM, Jee WSS (1986) Humoral and ionic regulation of osteoclast acidity. Calcif Tissue Int 39:252–258

    Article  Google Scholar 

  • Andersson G, Ek-Rylander B, Hammarstrom LE, Lindskog S, Toverud SU (1986) Immunocytochemical localization of a tartrate-resistant and vanadate-sensitive acid nucleotide tri- and diphosphatase. J Histochem. Cytochem 34:293–298

    Article  PubMed  CAS  Google Scholar 

  • Andersson G, Ek-Rylander B, Minkin C (1991) Acid phosphatases. In: Rifkin BR, Gay CV (eds) The biology and physiology of the osteoclast. CRC Press, Boca Raton (in press)

    Google Scholar 

  • Arnett TR, Dempster DW (1986) The effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119:119–124

    Article  PubMed  CAS  Google Scholar 

  • Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324

    Article  PubMed  CAS  Google Scholar 

  • Baron R, Neff L, Lippincott–Schwartz J, Louvard D, Mellman I, Helenius A, Marsh M (1985a) Distribution of lysosomal membrane proteins in the osteoclast and their relationship to acidic compartments. J Cell Biol 101:53a

    Article  Google Scholar 

  • Baron R, Neff L, Louvard D, Courtoy PJ (1985b) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100 kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101:2210–2222.

    Article  PubMed  CAS  Google Scholar 

  • Baron R, Neff L, Roy C, Boisvert A, Caplan M (1986) Evidence for a high and specific concentration of (Na+, K+) ATPase in the plasma membrane of the osteoclast. Cell 46:311–320

    Article  PubMed  CAS  Google Scholar 

  • Baron R, Neff L, Brown W, Courtoy PJ, Louvard D, Farquhar, MG (1988) Polarized secretion of lysosomal enzymes: co-distribution of cation-independent mannose- 6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J Cell Biol 106:1863–1872

    Article  PubMed  CAS  Google Scholar 

  • Baron R, Eeckhout Y, Neff L, Francois-Gillet C, Henriet P, Delaisse JM, Vaes G (1990a) Affinity purified antibodies reveal the presence of (pro) collagenase in the subosteoclastic bone resorbing compartment. J Bone Miner Res 5:S203

    Google Scholar 

  • Baron R, Neff L, Brown W, Louvard D, Courtoy PJ (1990b) Selective internaliza- tion of the apical plasma membrane and rapid redistribution of lysosomal enzymes and mannose 6-phosphate receptors during osteoclast inactivation by calcitonin. J Cell Sci 97:439–447

    PubMed  CAS  Google Scholar 

  • Beard CJ, Key LL, Newburger PE, Ezekowitz AB, Arceci R, Miller B, Proto P, Ryan T, Anast CS, Simons ER (1986) Neutrophil defect associated with malig- nant infantile osteopetrosis. J Lab Clin Med 108:498–505

    PubMed  CAS  Google Scholar 

  • Bekker PJ, Gay CV (1990a) Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J Bone Miner Res 5:569–579

    Article  PubMed  CAS  Google Scholar 

  • Bekker PJ, Gay CV (1990b) Characterization of a calcium ATPase in osteoclast plasma membrane. J Bone Miner Res 5:557–567

    Article  PubMed  CAS  Google Scholar 

  • Billecocq A, Emanuel J, Jamsa-Kellokumpu S, Prallet B, Levenson R, Baron R (1990a) l,25(OH)2D3 induces the concomitant expression of the vitronectin receptor, sodium pumps and carbonic anhydrase II in avian bone marrow cells. In: Cohn DV, Glorieux FH, Martin TJ (eds) Calcium regulation and bone metabolism. Elsevier, Amsterdam, pp 152–156

    Google Scholar 

  • Billecocq A, Rettig-Emanuel J, Levenson R, Baron R (1990b) l,25(OH)2D3 regulates the expression of carbonic anhydrase II in non erythroid avian bone marrow cells. Proc Natl Acad Sci USA 87:6470–6474

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL (1986) Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol 102:1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Teitelbaum SL, Schimke PA, Konsek JD, Koziol CM, Schlesinger PH (1988) Receptor–mediated uptake of a mannose-6-phosphate bearing glycoprotein by isolated chicken osteoclasts. J Cell Physiol 137:476–482

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    Article  PubMed  CAS  Google Scholar 

  • Blair HC, Teitelbaum SL, Tan HL, Koziol CM, Schlesinger PH (1991) Passive chloride permeability charge coupled to H+ ATPase of avian osteoclast ruffled membrane. Am J Physiol 260:C1315–C1324

    PubMed  CAS  Google Scholar 

  • Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Gluck S, Hartwig J (1987) Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ ATPase. J Cell Biol 105:1637–1648

    Article  PubMed  CAS  Google Scholar 

  • Brown WJ, Farquhar MG (1984) The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis-Golgi cisternae. Cell 36:295–307

    Article  PubMed  CAS  Google Scholar 

  • Brown WJ, Farquhar MG (1987) The distribution of 215 kD mannose-6-phosphate receptors within cis (heavy) and trans (light) Golgi subfractions varies in dif- ferent cell types. Proc Natl Acad Sci USA 84:9001–9005

    Article  PubMed  CAS  Google Scholar 

  • Brown WJ, Goodhouse J, Farquhar MG (1986) Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes. J Cell Biol 103:1235–1247

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty M, Su Y, Nathanson M, Rubega-Male A, Slayman C, Baron R (1991) The effects of calcitonin in rat osteoclasts and in a kidney cell line (LLC-PK1) are mediated via an inhibition of the Na+/H+ antiporter. J Bone Miner Res 6:S134

    Google Scholar 

  • Chambers TJ, Magnus CJ (1982) Calcitonin alters behavior of isolated osteoclasts. J Pathol 136:27–39

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ, Moore A (1983) The sensitivity of isolated osteoclasts to morpho- logical transformation by calcitonin. J Clin Endocrinol Metab 57:819–824

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ, Athanasou NA, Fuller K (1984) Effect of parathyroid hormone and calcitonin on the cytoplasmic spreading of isolated osteoclasts. J Endocrinol 102:281–286

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ, McSheehy PMJ, Thomson BM, Fuller K (1985) The effect of calcium regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology 116:234–239

    Article  PubMed  CAS  Google Scholar 

  • Chambers TJ, Fuller K, Darby JA, Pringle JAS, Horton MA (1986) Monoclonal antibodies against osteoclasts inhibit bone resorption in vitro. Bone Miner 1:127–135

    PubMed  CAS  Google Scholar 

  • Chambers TJ, Fuller K, Darby JA (1987) Hormonal regulation of acid phosphatase release by osteoclasts disaggregated from neonatal rat bone. J Cell Physiol 132:90–96

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee D, Leit M, Neff L, Chakraborty M, Jamsa-Kellokumpu S, Fuchs R, Baron R (1991) A new and specific type of vacuolar proton pump is present at the osteoclast ruffled-border membrane. J Bone Miner Res 6:S197

    Google Scholar 

  • Chatterjee D, Chakraborty M, Leit M, Neff L, Jamsa-Kellokumpu S, Fuchs R, Baron R (1992) Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoblast proton pump from other vascular H+ ATPases. Proc Natl Acad Sci 89:6257–6261

    Article  PubMed  CAS  Google Scholar 

  • Creek KE, Sly WS (1984) The role of the phosphomannosyl receptor in the trans- port of acid hydrolases to lysosomes. In: Dingle JT, Dean RT, Sly WS (eds) Lysosomes in biology and pathology. Elsevier, Amsterdam, pp 63–82

    Google Scholar 

  • Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M (1989) The osteoclast functional antigen, implicated in the regulation of bone resorption, is bio- chemically related to the vitronectin receptor. J Cell Biol 109:1817–1826

    Article  PubMed  CAS  Google Scholar 

  • Delaisse JM, Vaes G (1992) Mechanism of mineral solubilization and matrix degradation in osteoclastic bone resorption. In: Rifkin BR, Gay CV (eds) The biology and physiology of the osteoclast. CRC Press, Boca Raton (in press)

    Google Scholar 

  • Delaisse JM, Ledent P, Vaes G (1991) Collagenolytic cysteine proteinases of bone tissue. Biochem J 279:167–174

    PubMed  CAS  Google Scholar 

  • Delaisse JM, Neff L, Eeckhout Y, Su Y, Vaes G, Baron R (1992) Evidence for the presence of (pro) collagenase in osteoclasts. Bone and Mineral 17 (Suppl):82 (Abstr)

    Google Scholar 

  • Dempster DW, Murrills RJ, Herbert WR, Arnett TR (1987) Biological activity of chicken calcitonin: effects on neonatal rat and embryonic chicks osteoclasts. J Bone Miner Res 2:443–448

    Article  PubMed  CAS  Google Scholar 

  • Doty SB, Schofield BH (1972) Electron microscopic localization of hydrolytic enzymes in osteoclasts. Histochem J 4:245–258

    Article  PubMed  CAS  Google Scholar 

  • Eeckhout Y, Vaes G (1977) Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem J 166:21–31

    PubMed  CAS  Google Scholar 

  • Ek-Rylander B, Bill P, Norgard M, Nilsson S, Andersson G (1991) Cloning, sequence and developmental expression of a type 5, tartrate-resistant, acid phosphatase of rat bone. J Biol Chem 266:24684–24689

    PubMed  CAS  Google Scholar 

  • Everts V, Delaisse JM, Korper W, Niehof A, Vaes G, Beertsen W (1992) The degradation of collagen in the bone-resorbing compartment underlying the osteolast involves both cysteine-proteinases and matrix metalloproteinases. J Cell Physiol 150:221–231

    Article  PubMed  CAS  Google Scholar 

  • Felix R, Cecchini MG, Fleisch H (1990) Macrophage colony stimulating factor restores in vitro bone resorption in the op/op osteopetrotic mouse. Endocrinology 127:2592–2594

    Article  PubMed  CAS  Google Scholar 

  • Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796

    PubMed  CAS  Google Scholar 

  • Fuchs R, Male P, Mellman I (1989) Acidification and ion permeabilities of highly purified rat liver endosomes. J Biol Chem 264:2212–2220

    PubMed  CAS  Google Scholar 

  • Garrett IR, Boyce BF, Oreffo ROC, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    Article  PubMed  CAS  Google Scholar 

  • Gay CV, Mueller WJ (1974) Carbonic anhydrase and osteoclasts: localization by labelled inhibitor autoradiography. Science 183:432–434

    Article  PubMed  CAS  Google Scholar 

  • Grills BL, Gallagher JA, Allan EH, Yumita S, Martin TJ (1990) Identification of plasminogen activator in osteoclasts. J Bone Miner Res 5:499–505

    Article  PubMed  CAS  Google Scholar 

  • Hall TJ, Chambers TJ (1989) Optimal bone resorption by isolated rat osteoclasts requires chloride/bicarbonate exchange. Calcif Tissue Int 45:378–380

    Article  PubMed  CAS  Google Scholar 

  • Hall TJ, Chambers TJ (1990) Na+/H+ antiporter is the primary proton transport system used by osteoclasts during bone resorption. J Cell Physiol 142:420–424

    Article  PubMed  CAS  Google Scholar 

  • Hammarstrom LE, Hanker JS, Toverud SU (1971) Cellular differences in acid phosphatase isoenzymes in bone and teeth. Clin Orthop 78:151–167

    Article  PubMed  CAS  Google Scholar 

  • Hell JW, Maycox PR, Stadler H, Jahn R (1988) Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J 7:3023–3029

    PubMed  CAS  Google Scholar 

  • Hilliard TJ, Meadows G, Kahn AJ (1990) Lysozyme synthesis in osteoclasts. J Bone Miner Res 5:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Holtrop ME, King GJ (1977) The ultrastructure of the osteoclast and its functional implications. Clin Orthop 123:177–196

    PubMed  Google Scholar 

  • Horne W, Moya M, Neff L, Chatterjee D, Kellokumpu S, Kopito R, Alper S, Baron R (1991) A band 3-related chloride/bicarbonate exchanger is highly expressed at the basolateral membrane of osteoclasts. J Bone Miner Res 6:S95

    Google Scholar 

  • Horton MA, Davies J (1989) Perspectives: adhesion receptors in bone. J. Bone Miner Res 4:803–807

    Article  CAS  Google Scholar 

  • Hosoi T, Asaka T, Tomita T, Takeda J, Ouchi Y, Orimo H (1991) Demonstration of local delivery and activation of TGF-beta by osteoclasts in the resorption lacunae. J Bone Miner Res 6:S264

    Google Scholar 

  • Hunter SJ, Schraer H, Gay CV (1988) Characterization of isolated and cultured chick osteoclasts: the effects of acetazolamide, calcitonin and PTH on acid production. J Bone Miner Res 3:297–303

    Article  PubMed  CAS  Google Scholar 

  • Hunter SJ, Schraer H, Gay CV (1989) Characterization of the cytoskeleton in isolated chick osteoclasts: effects of calcitonin. J Histochem. Cytochem 37: 1529–1537

    Article  CAS  Google Scholar 

  • Hynes RO (1987) Integrins: A family of cell-surface receptors. Cell 48:549–554

    Article  PubMed  CAS  Google Scholar 

  • Ibbotson KJ, Roodman GD, McManus LM, Mundy GR (1984) Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol 99:471–480

    Article  PubMed  CAS  Google Scholar 

  • Kallio DM, Garant PR, Minkin C (1971) Evidence of coated membranes in the ruffled border of the osteoclast. J Ultrastruct Res 37:169–177

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa J, Heersche JNM (1988) Osteoclastic bone resorption: in vitro analysis of the rate of resorption and migration of idividual osteoclasts. Bone 9:73–79

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa J, Yamanaka T, Doi S, Turksen K, Heersche JNM, Aubin JE, Takeuchi H (1990) A band of F-actin containing podosomes is involved in bone resorption by osteoclasts. Bone 11:287–293

    Article  PubMed  CAS  Google Scholar 

  • Key LL, Ries WL, Taylor RG, Hays BD, Pitzer BL (1990) Oxygen-derived free radicals in osteoclasts: the specificity and location of the nitroblue tetrazolium reaction. Bone 11:115–119

    Article  PubMed  CAS  Google Scholar 

  • King GJ, Holtrop ME (1975) Actin-like filaments in bone cells of cultured calvaria as demonstrated by binding to heavy meromyosin. J Cell Biol 66:445–451

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld S (1986) Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest 77:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kurihara N, Gluck S, Roodman GD (1990) Sequential expression of phenotype markers for osteoclasts during differentiation of precursors for multinucleated cells formed in long term human marrow cultures. Endocrinology 127:3215–3221

    Article  PubMed  CAS  Google Scholar 

  • Lakkakorpi P, Vaananen HK (1990) Calcitonin, PGE2 and dibutyril-cAMP disperse the specific microfilament structure in resorbing osteoclasts. J Histochem Cytochem 38:1487–1493

    Article  PubMed  CAS  Google Scholar 

  • Lakkakorpi PT, Vaananen HK (1991) Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J Bone Miner Res 6:817–826

    Article  PubMed  CAS  Google Scholar 

  • Lakkakorpi P, Tuukkanen J, Hentunen T, Jarvelin K, Vaananen K (1989) Organiza- tion of osteoclast microfilaments during the attachment to bone surface in vitro. J Bone Miner Res 4:817–825

    Article  PubMed  CAS  Google Scholar 

  • Lakkakorpi P, Horton MA, Helfrich MH, Karhukorpi E-K, Vaananen HK (1991) Kinetic and confocal microscopic studies of the microfilaments and vitronectin receptor in osteoclasts. J Bone Miner Res 6:S149

    Google Scholar 

  • Lucht U (1971) Acid phosphatase of osteoclasts demonstrated by electron microscopic histochemistry. Histochemie 28:103–117

    PubMed  CAS  Google Scholar 

  • Malgaroli A, Meldolesi J, Zambonin–Zallone A, Teti A (1989) Control of cytosolic free calcium in rat and chicken osteoclasts: the role of extracellular calcium and calcitonin. J Biol Chem 264:14342–14347

    PubMed  CAS  Google Scholar 

  • Marchisio PC, Naldini L, Cirillo D, Primavera MV, Teti A, Zambonin–Zallone A (1984) Cell-substratum interactions of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 99:1696–1705

    Article  PubMed  CAS  Google Scholar 

  • Marchisio PC, Cirillo D, Teti A, Zambonin–Zallone A, Tarone G (1987) Rous sarcoma virus transformed fibroblasts and cells of monocytic origin display a peculiar dot-like organization of cytoskeletal proteins involved in microfilament- membrane interactions. Exp Cell Res 169:202–214

    Article  PubMed  CAS  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemistry, physiology and inhibition. Physiol Rev 47:595–781

    PubMed  CAS  Google Scholar 

  • Masi L, Brandi ML, Gehron-Robey P, Kerr JM, Young MF, Bernabei PA, Yanagishita M (1991) Bone sialoprotein (BSP) expression in human monoblastic cell line (FLG 29.1). J Bone Miner Res 6:S262

    Google Scholar 

  • Matthew JL, Martin JH, Race GJ (1967) Giant-cell centriole. Science 155:1423–1424

    Article  Google Scholar 

  • Maycox PR, Deckwerth T, Hell JW, Jahn R (1988) Glutamate uptake by brain synaptic vesicles: energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem 263:15423–15428

    PubMed  CAS  Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathway. Annu Rev Biochem 55:663–700

    Article  PubMed  CAS  Google Scholar 

  • Merke J, Klaus G, Hugel U, Waldherr R, Ritz E (1986) No 1,25-dihydroxyvitamin D3 receptors on osteoclasts of calcium–deficient chicken despite demonstrable receptors on circulating monocytes. J Clin Invest 77:312–314

    Article  PubMed  CAS  Google Scholar 

  • Minkin C, Jennings JM (1972) Carbonic anhydrase and bone remodeling: sulfonamide inhibition of bone resorption in organ culture. Science 176:1031–1033

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi A, Hruska KA, Greenfield EM, Duncan R, Alvarez J, Barattolo R, Colucci S, Zambonin-Zallone A, Teitelbaum SL, Teti A (1990) Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption, J Cell Biol 111: 2543–2552

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi A, Alvarez J, Greenfield E, Teti A, Zambonin-Zallone A, Ross FP, Teitelbaum SL, Cheresh D, Hruska K (1991) Matrix protein binding to the osteoclast adhesion integrin mediates a reduction in [Ca2+]i. J Bone Miner Res 6:S96

    Google Scholar 

  • Miyaura C, Abe E, Kuribayasha T, Tanaka H, Konno K, Nishii Y, Suda T (1981) la,25-dihydroxyvitamin D3 induces differentiation of myeloid leukaemia cells. Biochem. Biophys. Res Commun 102:937–943

    Article  PubMed  CAS  Google Scholar 

  • Murrills RJ, Shane E, Lindsay R, Dempster DW (1989) Bone resorption by isolated human osteoclasts in vitro: effects of calcitonin. J Bone Miner Res 4:259–268

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1991) Structure and pharmacology of the proton ATPases. Trends Pharmacol Sci 12:71–75

    Article  PubMed  CAS  Google Scholar 

  • Nelson RL, Bauer GE (1977) Isolation of osteoclasts by velocity sedimentation at unit gravity. Calcif Tissue Res 22:303–313

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Taiz L (1989) The evolution of H+ ATPases. Trends Biochem Sci 14: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Nicholson GC, Moseley JM, Sexton PM, Mendelsohn FAO, Martin TJ (1986) Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J Clin Invest 78:355–360

    Article  PubMed  CAS  Google Scholar 

  • Nijweide PJ, Burger EH, Feyen JH (1986) Cells of bone: proliferation, differentia- tion and hormonal regulation. Physiol Rev 66:355–360

    Google Scholar 

  • Oreffo ROC, Mundy GR, Seyedin SM, Bonewald LF (1989) Activation of the bone- derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun 158:817–823

    Article  PubMed  CAS  Google Scholar 

  • Oreffo ROC, Teti A, Francis MJO, Triffitt JT, Carano A, Zambonin-Zallone A (1991) Effect of vitamin A on bone resorption: evidence for a direct stimulation of isolated chicken osteoclasts by retinol and retinoic acid. J Bone Miner Res 3:203–210

    Article  Google Scholar 

  • Osdoby P, Martini MC, Caplan AI (1982) Isolated osteoclasts and their presumed progenitor cells, the monocyte, in culture. J Exp Zool 224:331–344

    Article  PubMed  CAS  Google Scholar 

  • Oursler MJ, Bell LV, Clevinger B, Osdoby P (1985) Identification of osteoclast- specific monoclonal antibodies. J Cell Biol 100:1592–1600

    Article  PubMed  CAS  Google Scholar 

  • Oursler MJ, Li L, Osdoby P (1989) Characterization of an osteoclast membrane protein related to superoxide dismutase. J Bone Miner Res 4:S265

    Google Scholar 

  • Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Speisberg TC (1991) Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 88:6613–6617

    Article  PubMed  CAS  Google Scholar 

  • Pfeilschifter J, Bonewald L, Mundy GR (1990) Characterization of the latent trans- forming growth factor ß complex in bone. J Bone Miner Res 5:49–58

    Article  PubMed  CAS  Google Scholar 

  • Qi DY, Oreffo ROC, Symons GA, DiGiovine FS, Seid J, Duff GW, Russell RGG (1991) TNF-α and TGF–ß gene expression in day 14 GM-CFC-derived osteoclasts detected by in situ hybridization. J Bone Mine Res 6:S263

    Google Scholar 

  • Ravesloot JH, Ypey DL, Nijweide PJ, Buisman HP, Vrijheid-Lammers T (1989a) Three voltage–activated Κ+ conductances and an ATP activated conductance in freshly isolated embryonic chick osteoclasts. Pfluegers Arch 414:S166–S167

    Article  Google Scholar 

  • Ravesloot JH, Ypey DL, Vrijheid-Lammers T, Nijweide PJ (1989b) Voltage-activated K+ conductances in freshly isolated embryonic chicken osteoclasts. Proc Natl Acad Sci USA 86:6821–6825

    Article  PubMed  CAS  Google Scholar 

  • Reinholt FP, Hultenby K, Oldberg A, Heinegard D. (1990a) Osteopontin: a possible anchor of osteoclasts to bone. Proc. Natl Acad Sci USA 87:4473–4475

    Article  PubMed  CAS  Google Scholar 

  • Reinholt FP, Mengarelli Wildhom S, Ek-Rylander B, Andersson G (1990b) Ultra- structural localization of a tartrate-resistant acid ATPase in bone. J Bone Mine Res 5:1055–1061

    Article  CAS  Google Scholar 

  • Roodman GD, Ibbotson KJ, MacDonald BR, Kuehl TJ, Mundy GR (1985) 1,25- Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci USA 82:8213–8217

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Sardana MK, Grasser WA, Garsky VM, Murray JM, Gould RJ (1990) Echistatin is a potent inhibitor of bone resorption in culture. J Cell Biol 111:1713–1723

    Article  PubMed  CAS  Google Scholar 

  • Schenk R, Spiro D, Wiener J (1967) Cartilage resorption in tibial epiphyseal plate of growing rats. J Cell Biol 34:275–291

    Article  PubMed  CAS  Google Scholar 

  • Schmid S, Fuchs R, Kielian M, Helenius A, Mellman I (1989) Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification–defective mutants. J Cell Biol 108:1291-1300

    Article  PubMed  CAS  Google Scholar 

  • Schoppa NE, Su Y, Baron R, Boulpaep EL (1990) Identification of single ion channels in neonatal rat osteoclasts. J Bone Mine Res 5: S204

    Google Scholar 

  • Sims SM, Dixon SJ (1989) Inwardly rectifying K+ current in osteoclasts. Am J Physiol 256:C1277–C1282

    PubMed  CAS  Google Scholar 

  • Sims SM, Kelly MEM, Arkett SA, Dixon SJ (1991) Electrophysiology of osteoclasts. In: Rifkin BR, Gay CV (eds) Biology and physiology of the osteoclast. CRC Press, Boca Raton (in press)

    Google Scholar 

  • Sims SM, Kelly MEM, Dixon SJ (1991) K+ and Cl- currents in freshly isolated rat osteoclasts. Eur J Physiol 419:358–370

    Article  CAS  Google Scholar 

  • Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–2756

    Article  PubMed  CAS  Google Scholar 

  • Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702

    Article  PubMed  CAS  Google Scholar 

  • Sundquist K, Lakkakorpi P, Wallmark B, Vaananen K (1990) Inhibition of osteoclast proton transport by bafilomycin-Al abolishes bone resorption. Biochem Biophys Res Commun 168:309–313

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Akatsu T, Sasaki T, Nicholson GC, Mosley JM, Martin TJ, Suda T (1988a) Induction of calcitonin receptors by 1,25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinology 123:1504–1510

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy GR, Jones SJ, Boyde A, Suda T (1988b) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122: 1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Kukita T, MacDonald BR, Bird A, Mundy GR, McManus LM, Miller M, Boyde A, Jones SJ, Roodman GD (1989) Osteoclast-like cells form in long-term human bone marrow but not in peripheral blood cultures. J Clin Invest 83:543–550

    Article  PubMed  CAS  Google Scholar 

  • Taylor ML, Boyde A, Jones SJ (1989) The effect of fluoride on the patterns of adherence of osteoclasts cultured on and resorbing dentine: a 3D assess- ment of vinculin-labelled cells using confocal microscopy. Anat Embryol (Berl) 180:427–435

    Article  CAS  Google Scholar 

  • Testa NG, Allen TD, Lajtha LG, Onions D, Jarret O (1981) Generation of osteoclasts in vitro. J Cell Sci 47:127–137

    PubMed  CAS  Google Scholar 

  • Teti A, Blair HC, Schlesinger P, Grano M, Zambonin-Zallone A, Kahn AJ, Teitelbaum SL, Hruska KA (1989a) Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures. J Clin Invest 84:773–780

    Article  PubMed  CAS  Google Scholar 

  • Teti A, Blair HC, Teitelbaum SL, Kahn AJ, Koziol C, Konsek J, Zambonin-Zallone A, Schlesinger PH (1989b) Cytoplasmic pH regulation and chloride bicarbonate exchange in avian osteoclasts. J Clin Invest 83:227–233

    Article  PubMed  CAS  Google Scholar 

  • Teti A, Marchisio PC, Zambonin-Zallone A (1991) Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity. Am J Physiol 261: C1–C7

    PubMed  CAS  Google Scholar 

  • Turksen K, Kanehisa J, Opas M, Heersche JNM (1988) Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass. J Bone Miner Res 3:389–399

    Article  PubMed  CAS  Google Scholar 

  • Tuukkanen J, Vaananen HK (1986) Omeprazole, a specific inhibitor of H+-K+- ATPase, inhibits bone resorption in vitro. Calcif Tissue Int 38:123–125

    Article  PubMed  CAS  Google Scholar 

  • Udagawa N, Takahashi N, Akatsu T, Tranaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow–derived stromal cells. Proc Natl Acad Sci USA 87:7260–7264

    Article  PubMed  CAS  Google Scholar 

  • Vaananen HK, Karhukorpi EK, Sundquist K, Roininen I, Hentunen T, Tuukkanen J, Lakkakorpi P (1990) Evidence for the presence of a proton pump of the vacuolar H+-ATPase type in the ruffled border of osteoclasts. J Cell Biol 111:1305–1311

    Article  PubMed  CAS  Google Scholar 

  • Vaes G (1968) On the mechanisms of bone resorption: the action of parathyroid hormone on the excretion and synthesis of lysosomal enzymes and on the extracellular release of acid by bone cells. J Cell Biol 39:676–697

    Article  PubMed  CAS  Google Scholar 

  • Vaes G (1972) Inhibitory actions of calcitonin on resorbing bone explants in culture and on their release of lysosomal hydrolases. J Dent Res 51[Suppl]:362–366

    Article  PubMed  CAS  Google Scholar 

  • Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. Clin Orthop 231:239–271

    PubMed  CAS  Google Scholar 

  • Von Figura K, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu. Rev Biochem 55:167–193

    Article  Google Scholar 

  • Waite LC, Volkert WA, Kenny AD (1970) Inhibition of bone resorption by acetazolamide in the rat. Endocrinology 87:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Q, Gluck S (1990) Isolation and properties of bovine kidney brush border vacuolar H+-ATPase. J Biol Chem 265:21957–21965

    PubMed  CAS  Google Scholar 

  • Warshafsky B, Aubin JE, Heersche JNM (1985) Cytoskeleton rearrangements dur- ing calcitonin-induced changes in osteoclast motility in vitro. Bone 6:179–185

    Article  PubMed  CAS  Google Scholar 

  • Warshawsky H, Goltzman D, Rouleau MF, Bergeron JJM (1980) Direct in vivo demonstration by radioautography of specific binding sites for calcitonin in skeletal and renal tissues of the rat. J Cell Biol 85:682–694

    Article  PubMed  CAS  Google Scholar 

  • Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of CSF 1 in the macrophage deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832

    Article  PubMed  CAS  Google Scholar 

  • Wood DA, Hapak LK, Sims SM, Dixon SJ (1991) Direct effects of platelet-activating factor on isolated rat osteoclasts. J Biol Chem 266:15369–15376

    PubMed  CAS  Google Scholar 

  • Yoshida H, Hayashi SI, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa SI (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345: 442–444

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M (1990) “Calcium receptors” on eukaryotic cells with special reference to the osteoclast. Biosci Rep 10:493–507

    Article  PubMed  CAS  Google Scholar 

  • Zambonin-Zallone A, Teti A, Primavera MV (1982) Isolated osteoclasts in primary culture: first observations on structure and survival in culture media. Anat Embryol (Berl) 165:405–413

    Article  CAS  Google Scholar 

  • Zambonin-Zallone A, Teti A, Carano A, Marchisio PC (1988) The distribution of podosomes in osteoclasts cultured on bone laminae: effects of retinol. J Bone Miner Res 3:517–523

    Article  PubMed  CAS  Google Scholar 

  • Zambonin-Zallone A, Teti A, Grano M, Rubinacci A, Abbadini M, Gaboli M, Marchisio PC (1989) Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a beta 3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp Cell Res 182:645–652

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baron, R., Chakraborty, M., Chatterjee, D., Horne, W., Lomri, A., Ravesloot, JH. (1993). Biology of the Osteoclast. In: Physiology and Pharmacology of Bone. Handbook of Experimental Pharmacology, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77991-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77991-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77993-0

  • Online ISBN: 978-3-642-77991-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics