Advertisement

Biology of the Osteoclast

  • R. Baron
  • M. Chakraborty
  • D. Chatterjee
  • W. Horne
  • A. Lomri
  • J.-H. Ravesloot
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 107)

Abstract

The osteoclast is the cell responsible for the resorption of the extracellular bone matrix. Under physiological conditions, bone resorption plays an essential role in the homeostasis of both the skeleton and serum calcium. This cellular process is also essential in the growth and remodeling of bone, where it is tightly coupled to the process of bone formation by the osteoblast. It is the integrated functions of these two cell types that lead to the quantitative and qualitative maintenance of the skeleton, to the changes in size and shape of the individual bones during growth, and to bone repair after trauma or fracture. On the other hand, it is the disruption of the coupling between bone resorption and formation that leads to abnormally dense (osteopetrosis and osteosclerosis) or porous bone (osteoporosis). A coupled but high resorption rate characterizes high bone-turnover diseases, such as hyperparathyroidism or Paget’s disease, and leads to the disruption of the architecture and function of the skeleton.

Keywords

Bone Resorption Actin Filament Lysosomal Enzyme Osteoclastic Bone Resorption Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Awqati Q (1986) Proton-translocating ATPases. Cell Biol 2:179–199CrossRefGoogle Scholar
  2. Ali NN, Boyde A, Jones SJ (1984) Motility and resorption: osteoclastic activity in vitro. Anat Embryol (Berl) 170:51–56CrossRefGoogle Scholar
  3. Andersson RE, Woodbury DM, Jee WSS (1986) Humoral and ionic regulation of osteoclast acidity. Calcif Tissue Int 39:252–258CrossRefGoogle Scholar
  4. Andersson G, Ek-Rylander B, Hammarstrom LE, Lindskog S, Toverud SU (1986) Immunocytochemical localization of a tartrate-resistant and vanadate-sensitive acid nucleotide tri- and diphosphatase. J Histochem. Cytochem 34:293–298PubMedCrossRefGoogle Scholar
  5. Andersson G, Ek-Rylander B, Minkin C (1991) Acid phosphatases. In: Rifkin BR, Gay CV (eds) The biology and physiology of the osteoclast. CRC Press, Boca Raton (in press)Google Scholar
  6. Arnett TR, Dempster DW (1986) The effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119:119–124PubMedCrossRefGoogle Scholar
  7. Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324PubMedCrossRefGoogle Scholar
  8. Baron R, Neff L, Lippincott–Schwartz J, Louvard D, Mellman I, Helenius A, Marsh M (1985a) Distribution of lysosomal membrane proteins in the osteoclast and their relationship to acidic compartments. J Cell Biol 101:53aCrossRefGoogle Scholar
  9. Baron R, Neff L, Louvard D, Courtoy PJ (1985b) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100 kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101:2210–2222.PubMedCrossRefGoogle Scholar
  10. Baron R, Neff L, Roy C, Boisvert A, Caplan M (1986) Evidence for a high and specific concentration of (Na+, K+) ATPase in the plasma membrane of the osteoclast. Cell 46:311–320PubMedCrossRefGoogle Scholar
  11. Baron R, Neff L, Brown W, Courtoy PJ, Louvard D, Farquhar, MG (1988) Polarized secretion of lysosomal enzymes: co-distribution of cation-independent mannose- 6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J Cell Biol 106:1863–1872PubMedCrossRefGoogle Scholar
  12. Baron R, Eeckhout Y, Neff L, Francois-Gillet C, Henriet P, Delaisse JM, Vaes G (1990a) Affinity purified antibodies reveal the presence of (pro) collagenase in the subosteoclastic bone resorbing compartment. J Bone Miner Res 5:S203Google Scholar
  13. Baron R, Neff L, Brown W, Louvard D, Courtoy PJ (1990b) Selective internaliza- tion of the apical plasma membrane and rapid redistribution of lysosomal enzymes and mannose 6-phosphate receptors during osteoclast inactivation by calcitonin. J Cell Sci 97:439–447PubMedGoogle Scholar
  14. Beard CJ, Key LL, Newburger PE, Ezekowitz AB, Arceci R, Miller B, Proto P, Ryan T, Anast CS, Simons ER (1986) Neutrophil defect associated with malig- nant infantile osteopetrosis. J Lab Clin Med 108:498–505PubMedGoogle Scholar
  15. Bekker PJ, Gay CV (1990a) Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J Bone Miner Res 5:569–579PubMedCrossRefGoogle Scholar
  16. Bekker PJ, Gay CV (1990b) Characterization of a calcium ATPase in osteoclast plasma membrane. J Bone Miner Res 5:557–567PubMedCrossRefGoogle Scholar
  17. Billecocq A, Emanuel J, Jamsa-Kellokumpu S, Prallet B, Levenson R, Baron R (1990a) l,25(OH)2D3 induces the concomitant expression of the vitronectin receptor, sodium pumps and carbonic anhydrase II in avian bone marrow cells. In: Cohn DV, Glorieux FH, Martin TJ (eds) Calcium regulation and bone metabolism. Elsevier, Amsterdam, pp 152–156Google Scholar
  18. Billecocq A, Rettig-Emanuel J, Levenson R, Baron R (1990b) l,25(OH)2D3 regulates the expression of carbonic anhydrase II in non erythroid avian bone marrow cells. Proc Natl Acad Sci USA 87:6470–6474PubMedCrossRefGoogle Scholar
  19. Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL (1986) Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol 102:1164–1172PubMedCrossRefGoogle Scholar
  20. Blair HC, Teitelbaum SL, Schimke PA, Konsek JD, Koziol CM, Schlesinger PH (1988) Receptor–mediated uptake of a mannose-6-phosphate bearing glycoprotein by isolated chicken osteoclasts. J Cell Physiol 137:476–482PubMedCrossRefGoogle Scholar
  21. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857PubMedCrossRefGoogle Scholar
  22. Blair HC, Teitelbaum SL, Tan HL, Koziol CM, Schlesinger PH (1991) Passive chloride permeability charge coupled to H+ ATPase of avian osteoclast ruffled membrane. Am J Physiol 260:C1315–C1324PubMedGoogle Scholar
  23. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 85:7972–7976PubMedCrossRefGoogle Scholar
  24. Brown D, Gluck S, Hartwig J (1987) Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ ATPase. J Cell Biol 105:1637–1648PubMedCrossRefGoogle Scholar
  25. Brown WJ, Farquhar MG (1984) The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis-Golgi cisternae. Cell 36:295–307PubMedCrossRefGoogle Scholar
  26. Brown WJ, Farquhar MG (1987) The distribution of 215 kD mannose-6-phosphate receptors within cis (heavy) and trans (light) Golgi subfractions varies in dif- ferent cell types. Proc Natl Acad Sci USA 84:9001–9005PubMedCrossRefGoogle Scholar
  27. Brown WJ, Goodhouse J, Farquhar MG (1986) Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes. J Cell Biol 103:1235–1247PubMedCrossRefGoogle Scholar
  28. Chakraborty M, Su Y, Nathanson M, Rubega-Male A, Slayman C, Baron R (1991) The effects of calcitonin in rat osteoclasts and in a kidney cell line (LLC-PK1) are mediated via an inhibition of the Na+/H+ antiporter. J Bone Miner Res 6:S134Google Scholar
  29. Chambers TJ, Magnus CJ (1982) Calcitonin alters behavior of isolated osteoclasts. J Pathol 136:27–39PubMedCrossRefGoogle Scholar
  30. Chambers TJ, Moore A (1983) The sensitivity of isolated osteoclasts to morpho- logical transformation by calcitonin. J Clin Endocrinol Metab 57:819–824PubMedCrossRefGoogle Scholar
  31. Chambers TJ, Athanasou NA, Fuller K (1984) Effect of parathyroid hormone and calcitonin on the cytoplasmic spreading of isolated osteoclasts. J Endocrinol 102:281–286PubMedCrossRefGoogle Scholar
  32. Chambers TJ, McSheehy PMJ, Thomson BM, Fuller K (1985) The effect of calcium regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology 116:234–239PubMedCrossRefGoogle Scholar
  33. Chambers TJ, Fuller K, Darby JA, Pringle JAS, Horton MA (1986) Monoclonal antibodies against osteoclasts inhibit bone resorption in vitro. Bone Miner 1:127–135PubMedGoogle Scholar
  34. Chambers TJ, Fuller K, Darby JA (1987) Hormonal regulation of acid phosphatase release by osteoclasts disaggregated from neonatal rat bone. J Cell Physiol 132:90–96PubMedCrossRefGoogle Scholar
  35. Chatterjee D, Leit M, Neff L, Chakraborty M, Jamsa-Kellokumpu S, Fuchs R, Baron R (1991) A new and specific type of vacuolar proton pump is present at the osteoclast ruffled-border membrane. J Bone Miner Res 6:S197Google Scholar
  36. Chatterjee D, Chakraborty M, Leit M, Neff L, Jamsa-Kellokumpu S, Fuchs R, Baron R (1992) Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoblast proton pump from other vascular H+ ATPases. Proc Natl Acad Sci 89:6257–6261PubMedCrossRefGoogle Scholar
  37. Creek KE, Sly WS (1984) The role of the phosphomannosyl receptor in the trans- port of acid hydrolases to lysosomes. In: Dingle JT, Dean RT, Sly WS (eds) Lysosomes in biology and pathology. Elsevier, Amsterdam, pp 63–82Google Scholar
  38. Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M (1989) The osteoclast functional antigen, implicated in the regulation of bone resorption, is bio- chemically related to the vitronectin receptor. J Cell Biol 109:1817–1826PubMedCrossRefGoogle Scholar
  39. Delaisse JM, Vaes G (1992) Mechanism of mineral solubilization and matrix degradation in osteoclastic bone resorption. In: Rifkin BR, Gay CV (eds) The biology and physiology of the osteoclast. CRC Press, Boca Raton (in press)Google Scholar
  40. Delaisse JM, Ledent P, Vaes G (1991) Collagenolytic cysteine proteinases of bone tissue. Biochem J 279:167–174PubMedGoogle Scholar
  41. Delaisse JM, Neff L, Eeckhout Y, Su Y, Vaes G, Baron R (1992) Evidence for the presence of (pro) collagenase in osteoclasts. Bone and Mineral 17 (Suppl):82 (Abstr)Google Scholar
  42. Dempster DW, Murrills RJ, Herbert WR, Arnett TR (1987) Biological activity of chicken calcitonin: effects on neonatal rat and embryonic chicks osteoclasts. J Bone Miner Res 2:443–448PubMedCrossRefGoogle Scholar
  43. Doty SB, Schofield BH (1972) Electron microscopic localization of hydrolytic enzymes in osteoclasts. Histochem J 4:245–258PubMedCrossRefGoogle Scholar
  44. Eeckhout Y, Vaes G (1977) Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem J 166:21–31PubMedGoogle Scholar
  45. Ek-Rylander B, Bill P, Norgard M, Nilsson S, Andersson G (1991) Cloning, sequence and developmental expression of a type 5, tartrate-resistant, acid phosphatase of rat bone. J Biol Chem 266:24684–24689PubMedGoogle Scholar
  46. Everts V, Delaisse JM, Korper W, Niehof A, Vaes G, Beertsen W (1992) The degradation of collagen in the bone-resorbing compartment underlying the osteolast involves both cysteine-proteinases and matrix metalloproteinases. J Cell Physiol 150:221–231PubMedCrossRefGoogle Scholar
  47. Felix R, Cecchini MG, Fleisch H (1990) Macrophage colony stimulating factor restores in vitro bone resorption in the op/op osteopetrotic mouse. Endocrinology 127:2592–2594PubMedCrossRefGoogle Scholar
  48. Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796PubMedGoogle Scholar
  49. Fuchs R, Male P, Mellman I (1989) Acidification and ion permeabilities of highly purified rat liver endosomes. J Biol Chem 264:2212–2220PubMedGoogle Scholar
  50. Garrett IR, Boyce BF, Oreffo ROC, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639PubMedCrossRefGoogle Scholar
  51. Gay CV, Mueller WJ (1974) Carbonic anhydrase and osteoclasts: localization by labelled inhibitor autoradiography. Science 183:432–434PubMedCrossRefGoogle Scholar
  52. Grills BL, Gallagher JA, Allan EH, Yumita S, Martin TJ (1990) Identification of plasminogen activator in osteoclasts. J Bone Miner Res 5:499–505PubMedCrossRefGoogle Scholar
  53. Hall TJ, Chambers TJ (1989) Optimal bone resorption by isolated rat osteoclasts requires chloride/bicarbonate exchange. Calcif Tissue Int 45:378–380PubMedCrossRefGoogle Scholar
  54. Hall TJ, Chambers TJ (1990) Na+/H+ antiporter is the primary proton transport system used by osteoclasts during bone resorption. J Cell Physiol 142:420–424PubMedCrossRefGoogle Scholar
  55. Hammarstrom LE, Hanker JS, Toverud SU (1971) Cellular differences in acid phosphatase isoenzymes in bone and teeth. Clin Orthop 78:151–167PubMedCrossRefGoogle Scholar
  56. Hell JW, Maycox PR, Stadler H, Jahn R (1988) Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J 7:3023–3029PubMedGoogle Scholar
  57. Hilliard TJ, Meadows G, Kahn AJ (1990) Lysozyme synthesis in osteoclasts. J Bone Miner Res 5:1217–1222PubMedCrossRefGoogle Scholar
  58. Holtrop ME, King GJ (1977) The ultrastructure of the osteoclast and its functional implications. Clin Orthop 123:177–196PubMedGoogle Scholar
  59. Horne W, Moya M, Neff L, Chatterjee D, Kellokumpu S, Kopito R, Alper S, Baron R (1991) A band 3-related chloride/bicarbonate exchanger is highly expressed at the basolateral membrane of osteoclasts. J Bone Miner Res 6:S95Google Scholar
  60. Horton MA, Davies J (1989) Perspectives: adhesion receptors in bone. J. Bone Miner Res 4:803–807CrossRefGoogle Scholar
  61. Hosoi T, Asaka T, Tomita T, Takeda J, Ouchi Y, Orimo H (1991) Demonstration of local delivery and activation of TGF-beta by osteoclasts in the resorption lacunae. J Bone Miner Res 6:S264Google Scholar
  62. Hunter SJ, Schraer H, Gay CV (1988) Characterization of isolated and cultured chick osteoclasts: the effects of acetazolamide, calcitonin and PTH on acid production. J Bone Miner Res 3:297–303PubMedCrossRefGoogle Scholar
  63. Hunter SJ, Schraer H, Gay CV (1989) Characterization of the cytoskeleton in isolated chick osteoclasts: effects of calcitonin. J Histochem. Cytochem 37: 1529–1537CrossRefGoogle Scholar
  64. Hynes RO (1987) Integrins: A family of cell-surface receptors. Cell 48:549–554PubMedCrossRefGoogle Scholar
  65. Ibbotson KJ, Roodman GD, McManus LM, Mundy GR (1984) Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol 99:471–480PubMedCrossRefGoogle Scholar
  66. Kallio DM, Garant PR, Minkin C (1971) Evidence of coated membranes in the ruffled border of the osteoclast. J Ultrastruct Res 37:169–177PubMedCrossRefGoogle Scholar
  67. Kanehisa J, Heersche JNM (1988) Osteoclastic bone resorption: in vitro analysis of the rate of resorption and migration of idividual osteoclasts. Bone 9:73–79PubMedCrossRefGoogle Scholar
  68. Kanehisa J, Yamanaka T, Doi S, Turksen K, Heersche JNM, Aubin JE, Takeuchi H (1990) A band of F-actin containing podosomes is involved in bone resorption by osteoclasts. Bone 11:287–293PubMedCrossRefGoogle Scholar
  69. Key LL, Ries WL, Taylor RG, Hays BD, Pitzer BL (1990) Oxygen-derived free radicals in osteoclasts: the specificity and location of the nitroblue tetrazolium reaction. Bone 11:115–119PubMedCrossRefGoogle Scholar
  70. King GJ, Holtrop ME (1975) Actin-like filaments in bone cells of cultured calvaria as demonstrated by binding to heavy meromyosin. J Cell Biol 66:445–451PubMedCrossRefGoogle Scholar
  71. Kornfeld S (1986) Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest 77:1–6PubMedCrossRefGoogle Scholar
  72. Kurihara N, Gluck S, Roodman GD (1990) Sequential expression of phenotype markers for osteoclasts during differentiation of precursors for multinucleated cells formed in long term human marrow cultures. Endocrinology 127:3215–3221PubMedCrossRefGoogle Scholar
  73. Lakkakorpi P, Vaananen HK (1990) Calcitonin, PGE2 and dibutyril-cAMP disperse the specific microfilament structure in resorbing osteoclasts. J Histochem Cytochem 38:1487–1493PubMedCrossRefGoogle Scholar
  74. Lakkakorpi PT, Vaananen HK (1991) Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J Bone Miner Res 6:817–826PubMedCrossRefGoogle Scholar
  75. Lakkakorpi P, Tuukkanen J, Hentunen T, Jarvelin K, Vaananen K (1989) Organiza- tion of osteoclast microfilaments during the attachment to bone surface in vitro. J Bone Miner Res 4:817–825PubMedCrossRefGoogle Scholar
  76. Lakkakorpi P, Horton MA, Helfrich MH, Karhukorpi E-K, Vaananen HK (1991) Kinetic and confocal microscopic studies of the microfilaments and vitronectin receptor in osteoclasts. J Bone Miner Res 6:S149Google Scholar
  77. Lucht U (1971) Acid phosphatase of osteoclasts demonstrated by electron microscopic histochemistry. Histochemie 28:103–117PubMedGoogle Scholar
  78. Malgaroli A, Meldolesi J, Zambonin–Zallone A, Teti A (1989) Control of cytosolic free calcium in rat and chicken osteoclasts: the role of extracellular calcium and calcitonin. J Biol Chem 264:14342–14347PubMedGoogle Scholar
  79. Marchisio PC, Naldini L, Cirillo D, Primavera MV, Teti A, Zambonin–Zallone A (1984) Cell-substratum interactions of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 99:1696–1705PubMedCrossRefGoogle Scholar
  80. Marchisio PC, Cirillo D, Teti A, Zambonin–Zallone A, Tarone G (1987) Rous sarcoma virus transformed fibroblasts and cells of monocytic origin display a peculiar dot-like organization of cytoskeletal proteins involved in microfilament- membrane interactions. Exp Cell Res 169:202–214PubMedCrossRefGoogle Scholar
  81. Maren TH (1967) Carbonic anhydrase: chemistry, physiology and inhibition. Physiol Rev 47:595–781PubMedGoogle Scholar
  82. Masi L, Brandi ML, Gehron-Robey P, Kerr JM, Young MF, Bernabei PA, Yanagishita M (1991) Bone sialoprotein (BSP) expression in human monoblastic cell line (FLG 29.1). J Bone Miner Res 6:S262Google Scholar
  83. Matthew JL, Martin JH, Race GJ (1967) Giant-cell centriole. Science 155:1423–1424CrossRefGoogle Scholar
  84. Maycox PR, Deckwerth T, Hell JW, Jahn R (1988) Glutamate uptake by brain synaptic vesicles: energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem 263:15423–15428PubMedGoogle Scholar
  85. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathway. Annu Rev Biochem 55:663–700PubMedCrossRefGoogle Scholar
  86. Merke J, Klaus G, Hugel U, Waldherr R, Ritz E (1986) No 1,25-dihydroxyvitamin D3 receptors on osteoclasts of calcium–deficient chicken despite demonstrable receptors on circulating monocytes. J Clin Invest 77:312–314PubMedCrossRefGoogle Scholar
  87. Minkin C, Jennings JM (1972) Carbonic anhydrase and bone remodeling: sulfonamide inhibition of bone resorption in organ culture. Science 176:1031–1033PubMedCrossRefGoogle Scholar
  88. Miyauchi A, Hruska KA, Greenfield EM, Duncan R, Alvarez J, Barattolo R, Colucci S, Zambonin-Zallone A, Teitelbaum SL, Teti A (1990) Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption, J Cell Biol 111: 2543–2552PubMedCrossRefGoogle Scholar
  89. Miyauchi A, Alvarez J, Greenfield E, Teti A, Zambonin-Zallone A, Ross FP, Teitelbaum SL, Cheresh D, Hruska K (1991) Matrix protein binding to the osteoclast adhesion integrin mediates a reduction in [Ca2+]i. J Bone Miner Res 6:S96Google Scholar
  90. Miyaura C, Abe E, Kuribayasha T, Tanaka H, Konno K, Nishii Y, Suda T (1981) la,25-dihydroxyvitamin D3 induces differentiation of myeloid leukaemia cells. Biochem. Biophys. Res Commun 102:937–943PubMedCrossRefGoogle Scholar
  91. Murrills RJ, Shane E, Lindsay R, Dempster DW (1989) Bone resorption by isolated human osteoclasts in vitro: effects of calcitonin. J Bone Miner Res 4:259–268PubMedCrossRefGoogle Scholar
  92. Nelson N (1991) Structure and pharmacology of the proton ATPases. Trends Pharmacol Sci 12:71–75PubMedCrossRefGoogle Scholar
  93. Nelson RL, Bauer GE (1977) Isolation of osteoclasts by velocity sedimentation at unit gravity. Calcif Tissue Res 22:303–313PubMedCrossRefGoogle Scholar
  94. Nelson N, Taiz L (1989) The evolution of H+ ATPases. Trends Biochem Sci 14: 113–116PubMedCrossRefGoogle Scholar
  95. Nicholson GC, Moseley JM, Sexton PM, Mendelsohn FAO, Martin TJ (1986) Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J Clin Invest 78:355–360PubMedCrossRefGoogle Scholar
  96. Nijweide PJ, Burger EH, Feyen JH (1986) Cells of bone: proliferation, differentia- tion and hormonal regulation. Physiol Rev 66:355–360Google Scholar
  97. Oreffo ROC, Mundy GR, Seyedin SM, Bonewald LF (1989) Activation of the bone- derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun 158:817–823PubMedCrossRefGoogle Scholar
  98. Oreffo ROC, Teti A, Francis MJO, Triffitt JT, Carano A, Zambonin-Zallone A (1991) Effect of vitamin A on bone resorption: evidence for a direct stimulation of isolated chicken osteoclasts by retinol and retinoic acid. J Bone Miner Res 3:203–210CrossRefGoogle Scholar
  99. Osdoby P, Martini MC, Caplan AI (1982) Isolated osteoclasts and their presumed progenitor cells, the monocyte, in culture. J Exp Zool 224:331–344PubMedCrossRefGoogle Scholar
  100. Oursler MJ, Bell LV, Clevinger B, Osdoby P (1985) Identification of osteoclast- specific monoclonal antibodies. J Cell Biol 100:1592–1600PubMedCrossRefGoogle Scholar
  101. Oursler MJ, Li L, Osdoby P (1989) Characterization of an osteoclast membrane protein related to superoxide dismutase. J Bone Miner Res 4:S265Google Scholar
  102. Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Speisberg TC (1991) Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 88:6613–6617PubMedCrossRefGoogle Scholar
  103. Pfeilschifter J, Bonewald L, Mundy GR (1990) Characterization of the latent trans- forming growth factor ß complex in bone. J Bone Miner Res 5:49–58PubMedCrossRefGoogle Scholar
  104. Qi DY, Oreffo ROC, Symons GA, DiGiovine FS, Seid J, Duff GW, Russell RGG (1991) TNF-α and TGF–ß gene expression in day 14 GM-CFC-derived osteoclasts detected by in situ hybridization. J Bone Mine Res 6:S263Google Scholar
  105. Ravesloot JH, Ypey DL, Nijweide PJ, Buisman HP, Vrijheid-Lammers T (1989a) Three voltage–activated Κ+ conductances and an ATP activated conductance in freshly isolated embryonic chick osteoclasts. Pfluegers Arch 414:S166–S167CrossRefGoogle Scholar
  106. Ravesloot JH, Ypey DL, Vrijheid-Lammers T, Nijweide PJ (1989b) Voltage-activated K+ conductances in freshly isolated embryonic chicken osteoclasts. Proc Natl Acad Sci USA 86:6821–6825PubMedCrossRefGoogle Scholar
  107. Reinholt FP, Hultenby K, Oldberg A, Heinegard D. (1990a) Osteopontin: a possible anchor of osteoclasts to bone. Proc. Natl Acad Sci USA 87:4473–4475PubMedCrossRefGoogle Scholar
  108. Reinholt FP, Mengarelli Wildhom S, Ek-Rylander B, Andersson G (1990b) Ultra- structural localization of a tartrate-resistant acid ATPase in bone. J Bone Mine Res 5:1055–1061CrossRefGoogle Scholar
  109. Roodman GD, Ibbotson KJ, MacDonald BR, Kuehl TJ, Mundy GR (1985) 1,25- Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci USA 82:8213–8217PubMedCrossRefGoogle Scholar
  110. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497PubMedCrossRefGoogle Scholar
  111. Sato M, Sardana MK, Grasser WA, Garsky VM, Murray JM, Gould RJ (1990) Echistatin is a potent inhibitor of bone resorption in culture. J Cell Biol 111:1713–1723PubMedCrossRefGoogle Scholar
  112. Schenk R, Spiro D, Wiener J (1967) Cartilage resorption in tibial epiphyseal plate of growing rats. J Cell Biol 34:275–291PubMedCrossRefGoogle Scholar
  113. Schmid S, Fuchs R, Kielian M, Helenius A, Mellman I (1989) Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification–defective mutants. J Cell Biol 108:1291-1300PubMedCrossRefGoogle Scholar
  114. Schoppa NE, Su Y, Baron R, Boulpaep EL (1990) Identification of single ion channels in neonatal rat osteoclasts. J Bone Mine Res 5: S204Google Scholar
  115. Sims SM, Dixon SJ (1989) Inwardly rectifying K+ current in osteoclasts. Am J Physiol 256:C1277–C1282PubMedGoogle Scholar
  116. Sims SM, Kelly MEM, Arkett SA, Dixon SJ (1991) Electrophysiology of osteoclasts. In: Rifkin BR, Gay CV (eds) Biology and physiology of the osteoclast. CRC Press, Boca Raton (in press)Google Scholar
  117. Sims SM, Kelly MEM, Dixon SJ (1991) K+ and Cl- currents in freshly isolated rat osteoclasts. Eur J Physiol 419:358–370CrossRefGoogle Scholar
  118. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–2756PubMedCrossRefGoogle Scholar
  119. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702PubMedCrossRefGoogle Scholar
  120. Sundquist K, Lakkakorpi P, Wallmark B, Vaananen K (1990) Inhibition of osteoclast proton transport by bafilomycin-Al abolishes bone resorption. Biochem Biophys Res Commun 168:309–313PubMedCrossRefGoogle Scholar
  121. Takahashi N, Akatsu T, Sasaki T, Nicholson GC, Mosley JM, Martin TJ, Suda T (1988a) Induction of calcitonin receptors by 1,25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinology 123:1504–1510PubMedCrossRefGoogle Scholar
  122. Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy GR, Jones SJ, Boyde A, Suda T (1988b) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122: 1373–1382PubMedCrossRefGoogle Scholar
  123. Takahashi N, Kukita T, MacDonald BR, Bird A, Mundy GR, McManus LM, Miller M, Boyde A, Jones SJ, Roodman GD (1989) Osteoclast-like cells form in long-term human bone marrow but not in peripheral blood cultures. J Clin Invest 83:543–550PubMedCrossRefGoogle Scholar
  124. Taylor ML, Boyde A, Jones SJ (1989) The effect of fluoride on the patterns of adherence of osteoclasts cultured on and resorbing dentine: a 3D assess- ment of vinculin-labelled cells using confocal microscopy. Anat Embryol (Berl) 180:427–435CrossRefGoogle Scholar
  125. Testa NG, Allen TD, Lajtha LG, Onions D, Jarret O (1981) Generation of osteoclasts in vitro. J Cell Sci 47:127–137PubMedGoogle Scholar
  126. Teti A, Blair HC, Schlesinger P, Grano M, Zambonin-Zallone A, Kahn AJ, Teitelbaum SL, Hruska KA (1989a) Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures. J Clin Invest 84:773–780PubMedCrossRefGoogle Scholar
  127. Teti A, Blair HC, Teitelbaum SL, Kahn AJ, Koziol C, Konsek J, Zambonin-Zallone A, Schlesinger PH (1989b) Cytoplasmic pH regulation and chloride bicarbonate exchange in avian osteoclasts. J Clin Invest 83:227–233PubMedCrossRefGoogle Scholar
  128. Teti A, Marchisio PC, Zambonin-Zallone A (1991) Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity. Am J Physiol 261: C1–C7PubMedGoogle Scholar
  129. Turksen K, Kanehisa J, Opas M, Heersche JNM (1988) Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass. J Bone Miner Res 3:389–399PubMedCrossRefGoogle Scholar
  130. Tuukkanen J, Vaananen HK (1986) Omeprazole, a specific inhibitor of H+-K+- ATPase, inhibits bone resorption in vitro. Calcif Tissue Int 38:123–125PubMedCrossRefGoogle Scholar
  131. Udagawa N, Takahashi N, Akatsu T, Tranaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow–derived stromal cells. Proc Natl Acad Sci USA 87:7260–7264PubMedCrossRefGoogle Scholar
  132. Vaananen HK, Karhukorpi EK, Sundquist K, Roininen I, Hentunen T, Tuukkanen J, Lakkakorpi P (1990) Evidence for the presence of a proton pump of the vacuolar H+-ATPase type in the ruffled border of osteoclasts. J Cell Biol 111:1305–1311PubMedCrossRefGoogle Scholar
  133. Vaes G (1968) On the mechanisms of bone resorption: the action of parathyroid hormone on the excretion and synthesis of lysosomal enzymes and on the extracellular release of acid by bone cells. J Cell Biol 39:676–697PubMedCrossRefGoogle Scholar
  134. Vaes G (1972) Inhibitory actions of calcitonin on resorbing bone explants in culture and on their release of lysosomal hydrolases. J Dent Res 51[Suppl]:362–366PubMedCrossRefGoogle Scholar
  135. Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. Clin Orthop 231:239–271PubMedGoogle Scholar
  136. Von Figura K, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu. Rev Biochem 55:167–193CrossRefGoogle Scholar
  137. Waite LC, Volkert WA, Kenny AD (1970) Inhibition of bone resorption by acetazolamide in the rat. Endocrinology 87:1129–1139PubMedCrossRefGoogle Scholar
  138. Wang Z-Q, Gluck S (1990) Isolation and properties of bovine kidney brush border vacuolar H+-ATPase. J Biol Chem 265:21957–21965PubMedGoogle Scholar
  139. Warshafsky B, Aubin JE, Heersche JNM (1985) Cytoskeleton rearrangements dur- ing calcitonin-induced changes in osteoclast motility in vitro. Bone 6:179–185PubMedCrossRefGoogle Scholar
  140. Warshawsky H, Goltzman D, Rouleau MF, Bergeron JJM (1980) Direct in vivo demonstration by radioautography of specific binding sites for calcitonin in skeletal and renal tissues of the rat. J Cell Biol 85:682–694PubMedCrossRefGoogle Scholar
  141. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW, Ahmed-Ansari A, Sell KW, Pollard JW, Stanley ER (1990) Total absence of CSF 1 in the macrophage deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–4832PubMedCrossRefGoogle Scholar
  142. Wood DA, Hapak LK, Sims SM, Dixon SJ (1991) Direct effects of platelet-activating factor on isolated rat osteoclasts. J Biol Chem 266:15369–15376PubMedGoogle Scholar
  143. Yoshida H, Hayashi SI, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa SI (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345: 442–444PubMedCrossRefGoogle Scholar
  144. Zaidi M (1990) “Calcium receptors” on eukaryotic cells with special reference to the osteoclast. Biosci Rep 10:493–507PubMedCrossRefGoogle Scholar
  145. Zambonin-Zallone A, Teti A, Primavera MV (1982) Isolated osteoclasts in primary culture: first observations on structure and survival in culture media. Anat Embryol (Berl) 165:405–413CrossRefGoogle Scholar
  146. Zambonin-Zallone A, Teti A, Carano A, Marchisio PC (1988) The distribution of podosomes in osteoclasts cultured on bone laminae: effects of retinol. J Bone Miner Res 3:517–523PubMedCrossRefGoogle Scholar
  147. Zambonin-Zallone A, Teti A, Grano M, Rubinacci A, Abbadini M, Gaboli M, Marchisio PC (1989) Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a beta 3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp Cell Res 182:645–652PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • R. Baron
  • M. Chakraborty
  • D. Chatterjee
  • W. Horne
  • A. Lomri
  • J.-H. Ravesloot

There are no affiliations available

Personalised recommendations