Heterogeneous Relations

  • Gunther Schmidt
  • Thomas Ströhlein
Part of the EATCS Monographs on Theoretical Computer Science book series (EATCS)


We now pass from homogeneous to heterogeneous relations. In terms of matrices this amounts to passing from square matrices to general rectangular ones. The general principles stay the same as before, but when multiplying, joining, or intersecting heterogeneous relations one has to make sure that these operations are defined.


Bipartitioned Graph Functional Dependency Inverse Image Relation Type Relation Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.5 References

  1. Chin LH, Tarski A: Distributive and modular laws in the arithmetic of relation algebras. Univ. California Publ. Math. 1 (1951) 341–384.MathSciNetGoogle Scholar
  2. Ore O: Theory of graphs. Amer. Math. Soc. Colloq. Publ. Vol. XXXVIII, Providence, R. I., 1962Google Scholar
  3. Pöschel R, Kalužnin LA: Funktionen- und Relationenalgebren. Birkhäuser, Basel, 1979.Google Scholar
  4. Riguet J: Quelques propriétés des relations difonctionelles. C. R. Acad. Sci. Paris 230 (1950) 1999–2000.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Gunther Schmidt
    • 1
  • Thomas Ströhlein
    • 2
  1. 1.Fakultät für InformatikUniversität der Bundeswehr MünchenNeubibergGermany
  2. 2.Fakultät für InformatikTechnische Universität MünchenMünchen 2Germany

Personalised recommendations