Transferring the Bearing Using a Strapdown Inertial Measurement Unit

  • Dietrich Schröder
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 108)


Of all the various possibilities of using an inertial measurement unit (IMU) in surveying engineering only the determination of a reference bearing and its transfer is focussed upon in this paper. Strapdown-systems differ from the conventional gimballed platform-configuration by the use of the sensors which are sensitive to a rotation of the IMU. The gyroscopes, usually three Ringlasergyros or two Dynamical Tuned Gyros are, in addition to the accelerometer triad, fixed to the carrier. Thus the gyros serve as rate sensors and not as stabilizing elements as in the case of gimballed platform-systems. The advantage of fewer hardware components and thus lower hardware purchase and maintenance costs is opposed by the exposition of the sensors to the whole dynamical environment of the carrier. After an initial alignment with respect to the local horizontal frame the determined alignment-angles can be transferred to another control point by a proper evaluation of the sensor output without the necessity of a direct line of sight between the two points. In this paper the potential of the determination of the alignment and its transfer is discussed. In addition some simulation results of corresponding scenarios are presented.


Inertial Measurement Unit Angular Rate Inertial Sensor Sensor Output Misalignment Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bölcsvölgyi-Bán, M.; Schröder, D. (1990): An Observability Analysis of a GPS-Aided Geodetic Inertial Strapdown Measurement Unit. Proc, International Symposium on Kinematic Systems in Geodesy, Surveying and Remote Sensing, Banff.Google Scholar
  2. Hopf, H. (1940): Systeme symmetrischer Bilinearformen und euklidische Modelle der projektiven Räume, Vierteljschr. Naturforsch. GES. Zürich.Google Scholar
  3. Keller, D. (1991): Aufbau eines geodätischen Strapdown-Inertial-Navigationssystems zur Punktbestimmung. DGK Reihe C (to appear).Google Scholar
  4. Kothe, H.-H. (1987): Beobachtbarkeitsanalyse zeitvarianter Systeme und deren Anwendung bei der Optimalfilterung gestützter Trägheitsnavigationssysteme. Fortschrittberichte VDI Reihe 8 Nr. 152, Düsseldorf.Google Scholar
  5. Knickmeyer, E.H., Schwarz, K.-P. and Teunissen, P.J.G. (1988): Strapdown – ein Trägheitsnavigationskonzept für Ingenieuranwendungen, Ingenieurvermessung 1988, Ferd. Dümmlers Verlag.Google Scholar
  6. Schröder, D., Thong, N.C., Wiegner, S., Grafarend, E.W., Schaffrin, B. (1988): A comparative study of local level and strapdown inertial systems. Manuscripta geodaetica 13, pp. 224–248.Google Scholar
  7. Schröder, D. (1991): Genauigkeitsanalyse inertialer Vermessungssysteme mit fahrzeugfesten Sensoren. DGK Reihe C (to appear).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Dietrich Schröder
    • 1
  1. 1.Department of Geodetic ScienceUniversity of StuttgartStuttgart 1Germany

Personalised recommendations