Skip to main content

Structure of the TFIIIA-DNA Complex

  • Chapter
Book cover Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 7))

Abstract

Our current understanding of the expression of eukaryotic class III genes has benefited greatly from studies of the developmentally regulated 5S RNA gene system of the African clawed frog Xenopus (Wolffe and Brown 1988). In addition, how the 5S-specific transcription factor III A (TFIIIA) interacts with 5S DNA has proven to be a most interesting problem in structural biology. The elucidation of the primary structure of TFIIIA led to the recognition of a whole new class of DNA-binding proteins, those containing the zinc finger, of which TFIIIA is the prototypical example (Miller et al. 1985). Moreover, the unusual way in which this protein binds to DNA has sparked the development of new solution-based techniques for understanding the structure of this and other protein-DNA complexes (Shastry 1991; Hayes and Tullius 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg JM (1986) Potential metal-binding domains in nucleic acid binding proteins. Science 232: 485–487

    Article  PubMed  CAS  Google Scholar 

  • Berg JM (1988) Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc Natl Acad Sci USA 85: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Berg JM (1990) Zinc finger domains: hypotheses and current knowledge. Annu Rev Biophys Biophys Chem 19: 405–421

    Article  PubMed  CAS  Google Scholar 

  • Bieker JJ, Roeder RG (1984) Physical properties and DNA-binding stoichiometry of a 5S gene-specific transcription factor. J Biol Chem 259: 6158–6164

    PubMed  CAS  Google Scholar 

  • Churchill MEA (1987) Hydroxyl radical cleavage of DNA: structural studies on the TFIIIA-5S gene complex and on models for the Holliday recombination intermediate. PhD Thesis, Johns Hopkins University, Baltimore, Maryland

    Google Scholar 

  • Churchill MEA, Tullius TD, Klug A (1990) Mode of interaction of the zinc finger protein TFIIIA with a 5S RNA gene of Xenopus. Proc Natl Acad Sci USA 87: 5528–5532

    Article  PubMed  CAS  Google Scholar 

  • Engelke DR, Ng S-Y, Shastry BS, Roeder RG (1980) Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19: 717–728

    Article  PubMed  CAS  Google Scholar 

  • Fairall L, Rhodes D, Klug A (1986) Mapping of the sites of protection on a 5S RNA gene by the Xenopus transcription factor IIIA. J Mol Biol 192: 577–591

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg AM, King BO, Roeder RG (1984) Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 39: 479–489

    Article  PubMed  CAS  Google Scholar 

  • Hanas JS, Bogenhagen DF, Wu C-W (1983) Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene. Proc Natl Acad Sci USA 80: 2142–2145

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Tullius TD (1989) The missing nucleoside experiment: a new technique to study recognition of DNA by protein. Biochemistry 28: 9521–9527

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Tullius TD (1992) Structure of the TFIIIA/5S DNA complex. J Mol Biol 227: 407–417

    Article  PubMed  CAS  Google Scholar 

  • Jordan SR, Pabo CO (1988) Structure of the lambda complex at 2.5 Ä resolution: detailed view of the repressor-operator interactions. Science 242: 893–899

    Article  PubMed  CAS  Google Scholar 

  • Kochoyan M, Havel TF, Nguyen DT, Dahl CE, Keutmann HT, Weiss MA (1991) Alternating zinc fingers in the human male associated protein ZFY - D NMR structure of an even finger and implications for jumping-linker DNA recognition. Biochemistry 30: 3371–3386

    Article  PubMed  CAS  Google Scholar 

  • Krizek BA, Amann BT, Kilfoil VJ, Merkle DL, Berg JM (1991) A consensus zinc finger peptide: design, high-affinity metal binding, a pH-dependent structure, and a His to Cys sequence variant. J Am Chem Soc 113: 4518–4523

    Article  CAS  Google Scholar 

  • Lassar AB, Martin PL, Roeder RG (1983) Transcription of class III genes: formation of preinitiation complexes. Science 222: 740–748

    Article  PubMed  CAS  Google Scholar 

  • Lee MS, Gippert GP, Soman KV, Case DA, Wright PE (1989) Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 245: 635–637

    Article  PubMed  CAS  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4: 1609–1614

    PubMed  CAS  Google Scholar 

  • Nardelli J, Gibson TJ, Vesque C, Charnay P (1991) Base-sequence discrimination by zinc-finger DNA binding domains. Nature 349: 175–178

    Article  PubMed  CAS  Google Scholar 

  • Parraga G, Horvath SJ, Eisen A, Taylor WE, Hood L, Young ET, Klevit RE (1988) Zinc-dependent structure of a single-finger domain of yeast ADR1. Science 241: 1489–1492

    Article  PubMed  CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252: 809–817

    Article  PubMed  CAS  Google Scholar 

  • Pieler T, Hamm J, Roeder RG (1987) The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing. Cell 48: 91–100

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Klug A (1988) “Zinc fingers”: a novel motif for nucleic acid binding. In: Eckstein F, Lilley DMJ (eds) Nucleic Acids and Molecular Biology, vol 2. Springer, Berlin Heidelberg New York, pp 149–166

    Google Scholar 

  • Sakonju S, Brown DD (1981) The binding of a transcription factor to deletion mutants of a 5S ribosomal RNA gene. Cell 23: 665–669

    Article  PubMed  CAS  Google Scholar 

  • Sakonju S, Brown DD (1982) Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 31: 395–405

    Article  PubMed  CAS  Google Scholar 

  • Shastry BS (1991) Xenopus transcription factor IIIA (XTFIIIA): after a decade of research. Prog Biophys Mol Biol 56: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, Jackson IJ, Brown DD (1984) Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell 37: 645–652

    Article  PubMed  CAS  Google Scholar 

  • Taylor W, Jackson IJ, Siegel N, Kumar A, Brown D (1986) The developmental expression of the gene for TFIIIA in Xenopus laevis. Nucleic Acids Res 14: 6185–6195

    Article  PubMed  CAS  Google Scholar 

  • Tullius TD, Dombroski BA (1986) Hydroxyl radical “footprinting”: high-resolution information about DNA-protein contacts and application to lambda repressor and cro protein. Proc Natl Acad Sci USA 83: 5469–5473

    Article  PubMed  CAS  Google Scholar 

  • Vrana KE, Churchill ME A, Tullius TD, Brown DD (1988) Mapping functional regions of transcription factor TFIIIA. Mol Cell Biol 8: 1684–1696

    PubMed  CAS  Google Scholar 

  • Werel W, Schickor P, Heumann H (1991) Flexibility of the DNA enhances promoter affinity of Escherichia coli RNA polymerase. EMBO J 10: 2589–94

    PubMed  CAS  Google Scholar 

  • Wolffe AP, Brown DD (1988) Developmental regulation of two 5S ribosomal RNA genes. Science 241: 1626–1632

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayes, J.J., Tullius, T.D. (1993). Structure of the TFIIIA-DNA Complex. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77950-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77950-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77952-7

  • Online ISBN: 978-3-642-77950-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics