Skip to main content

DNA Bending by Fos and Jun: Structural and Functional Implications

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 7))

Abstract

The DNA double helix is generally viewed as a straight rod composed of structurally equivalent subunits. However, the structure of DNA can be highly polymorphic. This structural polymorphism includes bending of the helix axis, changes in helical periodicity and variations in the conformation of individual base pairs. Even if we only consider the individual dinucleotides to be structurally nonequivalent, DNA contains eight distinct structural elements. There is considerable evidence that dinucleotide structure is affected by neighboring base pairs (Privé et al. 1991; Yanagi et al. 1991), and as the size of the structural unit increases, the number of possible structures grows exponentially. Superimposed on the structural polymorphism of DNA itself are structural changes imposed by the interaction of DNA with various ligands, most importantly, the proteins that function in replication, recombination and transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abate C, Luk D, Curran T (1991) Transcriptional regulation by Fos and Jun in vitro: interaction among multiple activator and regulatory domains. Mol Cell Biol 11: 3624–3632

    PubMed  CAS  Google Scholar 

  • Aggarwal AK, Rodgers DW, Drottar M, Ptashne M, Harrison SC (1988) Recognition of a DNA operator by the repressor of phage 434: a view at high resolution. Science 242: 899–907

    Article  PubMed  CAS  Google Scholar 

  • Bracco L, Kotlarz D, Kolb A, Diekmann S, Buc H (1989) Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J 8: 4289–4296

    PubMed  CAS  Google Scholar 

  • Calladine CR, Drew HR, McCall MJ (1988) The intrinsic curvature of DNA in solution. J Mol Biol 201: 127–137

    Article  PubMed  CAS  Google Scholar 

  • Cohen DR, Ferreira PCP, Gentz R, Franza BR Jr, Curran T (1989) The product of a Fos-related gene Fra-1 binds cooperatively to the AP-1 site with Jun: transcription factor AP-1 is comprised of multiple protein complexes. Genes Dev 3: 173–184

    Article  PubMed  CAS  Google Scholar 

  • Crothers DM, Haran TE, Nadeau JG (1990) Intrinsically bent DNA. J Biol Chem 265: 7093–7096

    PubMed  CAS  Google Scholar 

  • Curran T, Franza BR Jr (1988) Fos and Jun: the AP-1 connection. Cell 55: 305–397

    Article  Google Scholar 

  • DiGabriele AD, Sanderson MR, Steitz TA (1989) Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc Natl Acad Sci USA 86: 1816–1820

    Article  PubMed  CAS  Google Scholar 

  • Drak J, Crothers DM (1991) Helical repeat and chirality effects on DNA gel electrophoretic mobility. Proc Natl Acad Sci USA 88: 3074–3078

    Article  PubMed  CAS  Google Scholar 

  • Gartenberg MR, Crothers DM (1988) DNA sequence determinants of CAP-induced bending and protein binding affinity. Nature 333: 824–829

    Article  PubMed  CAS  Google Scholar 

  • Gartenberg MR, Crothers DM (1991) Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter. J Mol Biol 219: 217–230

    Article  PubMed  CAS  Google Scholar 

  • Gartenberg MR, Ampe C, Steitz TA, Crothers DM (1990) Molecular characterization of the GCN4-DNA complex. Proc Natl Acad Sci USA 87: 6034–6038

    Article  PubMed  CAS  Google Scholar 

  • Gentz R, Rauscher FJ III, Abate C, Curran T (1989) Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains. Science 243: 1695–1699

    Article  PubMed  CAS  Google Scholar 

  • Gober JW, Shapiro L (1990) Integration host factor is required for the activation of developmentally regulated genes in Caulobacter. Genes Dev 4: 1494–1504

    Article  PubMed  CAS  Google Scholar 

  • Hagerman PJ (1984) Evidence for the existence of stable curvature in solution. Proc Natl Acad Sci USA 81: 4632–4636

    Article  PubMed  CAS  Google Scholar 

  • Hagerman PJ (1990) Sequence-directed curvature of DNA. Annu Rev Biochem 59: 755–781

    Article  PubMed  CAS  Google Scholar 

  • Hai T, Curran T (1991) Fos/Jun and ATF/CREB cross-family dimerization alters DNA binding specificity. Proc Natl Acad Sci USA 88: 3720–3724

    Article  PubMed  CAS  Google Scholar 

  • Heyduk T, Lee JC (1992) Solution studies of the structure of bent DNA in the cAMP receptor protein-lac DNA complex. Biochemistry 31: 5165–5171

    Article  PubMed  CAS  Google Scholar 

  • Hoover TR, Santero E, Porter S, Kustu S (1990) The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 63: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Kerppola TK, Curran T (1991a) DNA bending by Fos and Jun: the flexible hinge model. Science 254: 1210–1214

    Article  PubMed  CAS  Google Scholar 

  • Kerppola TK, Curran T (1991b) Fos-Jun heterodimers and Jun homodimers bend DNA in opposite orientations: implications for transcription factor cooperativity. Cell 66: 317–326

    Article  PubMed  CAS  Google Scholar 

  • Kerppola TK, Curran T (1991c) Transcription factor interactions: basics on zippers. Curr Opinion Struct Biol 1: 71–79

    Article  CAS  Google Scholar 

  • Kim J, Zweib C, Wu C, Adhya S (1989) Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene 85: 15–23

    Article  PubMed  CAS  Google Scholar 

  • Koo H-S, Drak J, Rice JA, Crothers DM (1990) Determination of the extent of DNA bending by an adenine-thymine tract. Biochemistry 29: 4227–4234

    Article  PubMed  CAS  Google Scholar 

  • Koudelka GB, Harbury P, Harrison SC, Ptashne M (1988) DNA twisting and the affinity of bacteriophage 434 operator for bacteriophage 434 repressor. Proc Natl Acad Sci USA 85: 4633–4637

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T, Ziff E (1988) The role of the leucine zipper in the fos-jun interaction. Nature 336: 646–651

    Article  PubMed  CAS  Google Scholar 

  • Lerman LS, Frisch HL (1982) Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21: 995–997

    Article  PubMed  CAS  Google Scholar 

  • Levene SD, Zimm BH (1989) Understanding the anomalous electrophoresis of bent DNA molecules: a reptation model. Science 245: 396–399

    Article  PubMed  CAS  Google Scholar 

  • Levene SD, Wu H-M, Crothers DM (1986) Bending and flexibility of kinetoplast DNA. Biochemistry 25: 3988–3995

    Article  PubMed  CAS  Google Scholar 

  • Liu-Johnson H-N (1986) The DNA binding domain and bending angle of E. coli CAP protein. Cell 47: 995–1005

    CAS  Google Scholar 

  • Lumpkin OJ, Dejardin P, Zimm BH (1985) Theory of gel electrophoresis of DNA. Biopolymers 24: 1573–1593

    Article  PubMed  CAS  Google Scholar 

  • Marini JC, Levene SD, Crothers DM, Englund PT (1982) Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci USA 79: 7664–7668 (Correction appears in 80:7678)

    Google Scholar 

  • McAllister CF, Achberger EC (1989) Rotational orientation of upstream curved DNA affects promoter function in Bacillus subtilis. J Biol Chem 264: 10451–10456

    PubMed  CAS  Google Scholar 

  • Moitoso de Vargas L, Landy A (1991) A switch in the formation of alternative DNA loops modulates k site-specific recombination. Proc Natl Acad Sci USA 88: 588–592

    CAS  Google Scholar 

  • Moitoso de Vargas L, Kim S, Landy A (1989) DNA looping generated by DNA bending protein IHF and the two domains of lambda integrase. Science 244: 1457–1461

    CAS  Google Scholar 

  • Murakami Y, Satake M, Yamaguchi-Iwai Y, Sakai M, Muramatsu M, Ito Y (1991) The nuclear protooncogenes c-jun and c-fos as regulators of DNA replication. Proc Natl Acad Sci USA 88: 3947–3951

    Article  PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Nathans D (1989) The basic region of Fos mediates specific DNA binding. EMBO J 8: 3833–3841

    PubMed  CAS  Google Scholar 

  • Nakabeppu Y, Ryder K, Nathans D (1988) DNA binding activities of three murine Jun proteins: stimulation by Fos. Cell 55: 907–915

    Article  PubMed  CAS  Google Scholar 

  • Nelson HCM, Finch JT, Luisi BF, Klug A (1987) The structure of an oligo(dA)oligo(dT) tract and its biological implications. Nature 330: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Nishina H, Sato H, Suzuki T, Sato M, Iba H (1990) Isolation and characterization of fra- 2, an additional member of the fos gene family. Proc Natl Acad Sci USA 87: 3619–3623

    Article  PubMed  CAS  Google Scholar 

  • Nye J A, Graves BJ (1990) Alkylation interference identifies essential DNA contacts for sequence-specific binding of the eukaryotic transcription factor C/EBP. Proc Natl Acad Sci USA 87: 3992–3996

    Article  PubMed  CAS  Google Scholar 

  • Oakley MG, Dervan PB (1990) Structural motif of the GCN4 DNA binding domain characterized by affinity cleaving. Science 248: 847–850

    Article  PubMed  CAS  Google Scholar 

  • O’Neil KT, Hoess RH, DeGrado WF (1990) Design of DNA-binding peptides based on the leucine zipper motif. Science 249: 774–778

    Article  PubMed  Google Scholar 

  • Otwinowski Z, Schevitz RW, Zhang R-G, Lawson CL, Jaochimiak A, Marmorstein RQ, Luisi BF, Sigler PB (1988) Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335: 321–329

    Article  PubMed  CAS  Google Scholar 

  • Patel L, Abate C, Curran T (1990) Altered protein conformation on DNA binding by Fos and Jun. Nature 347: 572–575

    Article  PubMed  CAS  Google Scholar 

  • Peck LJ, Wang JC (1981) Sequence dependence of the helical repeat of DNA in solution. Nature 292: 375–378

    Article  PubMed  CAS  Google Scholar 

  • PrivĂ© GG, Yanagi K, Dickerson RE (1991) Structure of the B-DNA decamer C-C-A-A- C-G-T-T-G-G and comparison with isomorphous decamers C-C-A-A-G-A-T-T-G-G and C-C-A-G-G-C-C-T-G-G. J Mol Biol 217: 177–199

    Article  PubMed  Google Scholar 

  • Rhodes D, Klug A (1981) Sequence-dependent helical periodicity of DNA. Nature 292: 378–380

    Article  PubMed  CAS  Google Scholar 

  • Risse G, Jooss K, Neuberg M, Briiller H-J, Muller R (1989) Asymmetrical recognition of the palindromic API binding site ( TRE) by Fos protein complexes. EMBO J 8: 3825–3832

    PubMed  CAS  Google Scholar 

  • Rojo F, Zaballos A, Salas M (1990) Bend induced by the phage (29 transcriptional activator in the viral late promoter is required for activation. J Mol Biol 211: 713–725

    Article  PubMed  CAS  Google Scholar 

  • Salvo JJ, Grindley NDF (1987) Helical phasing between DNA bends and the determination of bend direction. Nucleic Acids Res 15: 9771–9779

    Article  PubMed  CAS  Google Scholar 

  • Schultz SC, Shields GC, Steitz TA (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90°. Science 253:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Thompson JF, Landy A (1988) Empirical estimation of protein-induced DNA bending angles: applications to A site-specific recombination complexes. Nucleic Acids Res 16: 9687–9705

    Article  PubMed  CAS  Google Scholar 

  • Travers AA (1991) DNA bending and kinking - sequence dependence and function. Curr Opinion Struct Biol 1: 114–122

    Article  CAS  Google Scholar 

  • Turner R, Tjian R (1989) Leucine repeats and an adjacent DNA binding DNA binding domain mediate the formation of functional cFos-cJun heterodimers. Science 243: 1689–1694

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky L, Bodner M, Trifonov EN, Choder M (1986) Curved DNA: design, synthesis and circularization. Proc Natl Acad Sci USA 83: 862–866

    Article  PubMed  CAS  Google Scholar 

  • Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246: 911–916

    Article  PubMed  CAS  Google Scholar 

  • Wang JC (1979) Helical repeat of DNA in solution. Proc Natl Acad Sci USA 76: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Wang JC, Giaever GN (1988) Action at a distance along a DNA. Science 240: 300–300

    Article  PubMed  CAS  Google Scholar 

  • Wu H-M, Crothers DM (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308: 509–513

    Article  PubMed  CAS  Google Scholar 

  • Yanagi K, PrivĂ© GG, Dickerson RE (1991) Analysis of local helix geometry in three B-DNA decamers and eight dodecamers. J Mol Biol 217: 201–214

    Article  PubMed  CAS  Google Scholar 

  • Zahn K, Blattner FR (1987) Direct evidence for DNA bending at the lambda replication origin. Science 236: 416–422

    Article  PubMed  CAS  Google Scholar 

  • Zerial M, Toschi L, Ryseck R, Schuermann M, Muller R, Bravo R (1989) The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity. EMBO J 8: 805–813

    PubMed  CAS  Google Scholar 

  • Zinkel SS, Crothers DM (1987) DNA bend direction by phase sensitive detection. Nature 328: 178–181

    Article  PubMed  CAS  Google Scholar 

  • Zinkel SS, Crothers DM (1991) Catabolite activator protein-induced DNA bending in transcription initiation. J Mol Biol 219: 201–215

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kerppola, T.K., Curran, T. (1993). DNA Bending by Fos and Jun: Structural and Functional Implications. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77950-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77950-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77952-7

  • Online ISBN: 978-3-642-77950-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics