Advertisement

Selection of Functional RNA and DNA Molecules from Randomized Sequences

  • M. Famulok
  • J. W. Szostak
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 7)

Abstract

In vitro selection is a technique that allows the rapid screening of very large numbers of different DNA or RNA sequences for specific functional properties (Green et al. 1991; Famulok and Szostak 1992b; Szostak 1992). Applications of this method include the evaluation of binding sites between proteins and double-stranded (ds) or single-stranded (ss) nucleic acids, the study of structure, function, and substrate specificity of ribozymes and the de novo isolation and evaluation of nucleic acids (RNA and DNA) that bind to small biological and abiotic organic molecules.

Keywords

Triple Helix Primer Binding Site Selection Cycle Peptidyl Transferase Transcriptional Activator Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel DP, Zapp ML, Green MJ, Szostak JW (1991) HIV-1 rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67: 529–536PubMedCrossRefGoogle Scholar
  2. Beaudry AA, Joyce GF (1992) Directed evolution of an RNA enzyme. Science 257: 635–641 Blackwell TK, Weintraub H (1990) Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250: 1104–1110PubMedCrossRefGoogle Scholar
  3. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H (1990) Sequence-specific DNA binding by the c-Myc protein, Science 250: 1149–1151PubMedCrossRefGoogle Scholar
  4. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single- stranded DNA molecules that bind and inhibit human thrombin. Nature 355: 564–566PubMedCrossRefGoogle Scholar
  5. Brenner S, Lerner RA (1992) Encoded combinatorial chemistry. Proc Natl Acad Sci USA 89: 5381–5383PubMedCrossRefGoogle Scholar
  6. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822PubMedCrossRefGoogle Scholar
  7. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355: 850–852PubMedCrossRefGoogle Scholar
  8. Famulok M, Szostak JW (1992a) Stereospecific recognition of tryptophan agarose by in vitro selected RNA. J Am Chem Soc 114: 3990–3991CrossRefGoogle Scholar
  9. Famulok M, Szostak JW (1992b) In vitro selection of specific ligand-binding nucleic acids. Angew Chem 104: 1001–1011 (Angew Chem Int Ed Engl 104:979-988)Google Scholar
  10. Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79: 2023–2024CrossRefGoogle Scholar
  11. Francois J-C, Behmoaras TS, Chassignol M, Thuong N, Sun J, Helene C (1988) Periodic cleavage of poly(dA) by oligothymidylates covalently linked to the 1,10-phenanthroline- copper complex. Biochemistry 27: 2272–2276PubMedCrossRefGoogle Scholar
  12. Green R, Ellington AD, Szostak JW (1990) In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature 347: 406–408PubMedCrossRefGoogle Scholar
  13. Green R, Ellington AD, Bartel D, Szostak JW (1991) In vitro genetic analysis: selection and amplification of rare functional nucleic acids. Methods 2: 75–86CrossRefGoogle Scholar
  14. Kinzler KW, Vogelstein B (1989) Whole genome PCR: application to the identification of sequences bound by gene regulatory proteins. Nucleic Acids Res 17: 3645–3653PubMedCrossRefGoogle Scholar
  15. Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10: 634–642PubMedGoogle Scholar
  16. Moser HE, Dervan PB (1987) Sequence-specific cleavage of double-helical DNA by triple helix formation. Science 238: 645–650PubMedCrossRefGoogle Scholar
  17. Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416–1419PubMedCrossRefGoogle Scholar
  18. Oliphant AR, Brandl CJ, Struhl K (1989) Defining the sequence specificity of DNA- binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9: 2944–2949PubMedGoogle Scholar
  19. Pan T, Uhlenbeck OC (1992) In vitro selection of RNAs that undergo Autolytic cleavage with Pb2+. Biochemistry 31: 3887–3895PubMedCrossRefGoogle Scholar
  20. Pei D, Ulrich HD, Schultz PG (1991) A combinatorial approach toward DNA recognition. Science 253: 1408–1411PubMedCrossRefGoogle Scholar
  21. Piccirilli JA, McConnell TS, Zaug AJ, Noller HF, Cech T (1992) Aminoacyl esterase activity of the Tetrahymena ribozyme. Science 256: 1420–1424PubMedCrossRefGoogle Scholar
  22. Pollock R, Treisman R (1990) A sensitive method for the determination of protein-DNA binding specificities. Nucleic Acids Res 18: 6197–6204PubMedCrossRefGoogle Scholar
  23. Rajagopal P, Feigon J (1989) NMR studies of triple-strand formation from the homopurine- homopyrimide deoxyribonucleotides d(GA)4 and d(TC)4. Biochemistry 28: 7859–7870PubMedCrossRefGoogle Scholar
  24. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344: 467–468PubMedCrossRefGoogle Scholar
  25. Szostak JW (1992) In vitro genetics. Trends Biochem Sci 17: 89–93PubMedCrossRefGoogle Scholar
  26. Thiesen H-J, Bach C (1990) Target detection assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res 18: 3203–3209PubMedCrossRefGoogle Scholar
  27. Tuerk C, Gold L (1991) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510CrossRefGoogle Scholar
  28. Werner C, Krebs B, Keith G, Dirheimer G (1976) Specific cleavages of pure tRNAs by plumbous ions. Biochim Biophys Acta 432: 161–175PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Famulok
    • 1
  • J. W. Szostak
    • 2
  1. 1.Institut für Biochemie Max-Planck- Institut für BiochemieLudwig-Maximilians-Universität MünchenMartinsriedGermany
  2. 2.Department of Molecular BiologyMassachusetts General Hospital BostonUSA

Personalised recommendations