Skip to main content

Site-Specific Recombination and the Segregation of Circular Chromosomes

  • Chapter
Book cover Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 7))

Abstract

Site-specific recombination provides a mechanism for precise programmed DNA rearrangements. It was discovered through its involvement in the integration and excision of bacteriophage lambda into and out of the E. coli chromosome (reviewed in Landy 1989). Subsequently, site-specific recombination has been shown to be involved in the integration/excision of many other viruses; in converting the initial products of replicative intermolecular transposition to final products (Arthur and Sherratt 1979); in various inversion gene switches (Johnson 1991); and in the copy number control and stable inheritance of circular replicons (Colloms et al. 1990; Blakely et al. 1991). Related mechanisms and enzymes also appear to be involved in unprogrammed reactions that lead to less precise rearrangements, for example in the process of conjugative transposition and in the movement of integrons, bacterial genetic elements that are responsible for the movement of antibiotic resistance genes into and out of plasmids and transposable elements (Murphy 1989; Schmidt et al. 1989). In this short report, an E. coli chromosomally encoded site-specific recombination system that was initially identified through its role in the stable inheritance of multicopy plasmids is described in some detail. Subsequently, it has been shown that this system additionally functions in the normal segregation of the bacterial chromosome. We propose that the use of site-specific recombination to segregate circular replicons at cell division may be ubiquitous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argos P, Landy A, Abremski K, Egan JB, Haggard-Ljungquist E, Hoess RH, Kahn ML, Kalionis B, Narayana SVL, Pierson LS, Sternberg N, Leong JM (1986) The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5: 433–440

    PubMed  CAS  Google Scholar 

  • Arthur A, Sherratt DJ (1979) Dissection of the transposition process: a transposon-encoded site-specific recombination system. Mol Gen Genet 175: 267–274

    Article  PubMed  CAS  Google Scholar 

  • Bednarz AL, Boocock MR, Sherratt DJ (1990) Determinants of correct res site alignment in site-specific recombination by Tn3 resolvase. Genes Dev 4: 2366–2375

    Article  PubMed  CAS  Google Scholar 

  • Blakely G, Colloms S, May G, Burke M, Sherratt DJ (1991) Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3: 789–798

    PubMed  CAS  Google Scholar 

  • Chen J-W, Lee J, Jayaram M (1992) DNA cleavage in trans by the active site tyrosine during Flp recombination: switching protein partners before exchanging strands. Cell 69: 647–658

    Article  PubMed  CAS  Google Scholar 

  • Colloms SD, Sykora P, Szatmari G, Sherratt DJ (1990) Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol 172: 6973–6980

    PubMed  CAS  Google Scholar 

  • Duckett DR, Murchie AIH, Diekmann S, von Kitzing E, Kemper B, Lilley DM (1988) The structure of the Holliday junction and its resolution. Cell 55: 79–89

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Maruyama S, Kawaichi M, Honjo T (1992) The Drosophila homolog of the immunoglobulin recombination signal-binding protein regulates peripheral nervous system development. Cell 69: 1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Hatfull GF, Grindley NDF (1988) Resolvases and DNA invertases: a family of enzymes active in site-specific recombination. In: Kucholapati R, Smith GR (eds) Genetic recombination. American Society for Microbiology, Washington, DC, pp 357–396

    Google Scholar 

  • Johnson RC (1991) Mechanism of site-specific DNA inversion in bacteria. Curr Opinion Genet Dev 1: 404–411

    Article  CAS  Google Scholar 

  • Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H (1990) New topoisomerase essential for chromosome segregation in E. coli. Cell 63: 393–404

    Article  PubMed  CAS  Google Scholar 

  • Klemm P (1986) Two regulatory fim genes, fimB mdfimE control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5: 1389–1393

    PubMed  CAS  Google Scholar 

  • Kuempel PL, Henson JM, Dircks L, Tecklenburg M, Lim DF (1991) dif, A recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 3:799–811

    Google Scholar 

  • Landy A (1989) Dynamic, structural and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58: 913–949

    Article  PubMed  CAS  Google Scholar 

  • Lovett S, Kolodner RD (1991) Nucleotide sequence of the Escherichia coli recJ chromosomal region and construction of RecJ-overexpression plasmids. J Bacterial 173: 353–364

    CAS  Google Scholar 

  • Matsunami N, Hamaguchi Y, Yamamoto Y, Kuze K, Kangawa K, Matsuo H, Kawaichi M, Honjo T (1989) A protein binding to the Jk recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif. Nature 342: 934–937

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi K, Adzuma K (1991) Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one step transesterification mechanism. Cell 66: 129–140

    Article  PubMed  CAS  Google Scholar 

  • Murphy E (1989) Transposable elements in Gram-positive bacteria. In: Berg DE, Howe MM (eds) Mobile DNA. ASM, Washington, DC, pp 269–288

    Google Scholar 

  • Sadowski P (1986) Site-specific recombinases; changing partners and doing the twist. J Bacteriol 165: 341–347

    PubMed  CAS  Google Scholar 

  • Sanderson MR, Freemont PS, Rice PA, Goldman A, Hatfull GF, Grindley NDF, Steitz TA (1990) The crystal structure of the catalytic domain of the site-specific recombination enzyme gamma-delta resolvase at 2.7 Ä resolution. Cell 63: 1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Schmidt FRJ, Nucken GJ, Henschke RB (1989) Structure and function of hotspots providing signals for site-directed specific recombination and gene expression in Tn21 transposons. Mol Microbiol 3: 1545–1555

    Article  PubMed  CAS  Google Scholar 

  • Schweisguth F, Posakony JW (1992) Suppressor of Hairless, the Drosophila homology of the mouse recombination signal-binding protein gene, controls sensory organ cell fates. Cell 69: 1199–1212

    Article  PubMed  CAS  Google Scholar 

  • Stark WM, Boocock MR, Sherratt DJ (1989a) Site-specific recombination by Tn3 resolvase. Trends Genet 5: 304–309

    Article  PubMed  CAS  Google Scholar 

  • Stark WM, Sherratt DJ, Boocock MR (1989b) Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reaction. Cell 48: 779–790

    Article  Google Scholar 

  • Stark WM, Boocock MR, Sherratt DJ (1992) Catalysis by site-specific recombinases. Trends Genet 8, 432–439

    Article  PubMed  CAS  Google Scholar 

  • Stirling CJ, Szatmari G, Stewart G, Smith MCM, Sherratt DJ (1988) The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7: 4389–4395

    PubMed  CAS  Google Scholar 

  • Stirling CJ, Colloms S, Collins JF, Szatmari G, Sherratt DJ (1989) xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 8:1623–1627

    Google Scholar 

  • Summers DK (1989) Derivatives of ColEl cer show altered topological specificity in site- specific recombination. EMBO J 8 (1): 309–315

    PubMed  CAS  Google Scholar 

  • Summers DK, Sherratt DJ (1984) Multimerization of high copy number plasmids caused instability: ColEl encodes a determinant essential for plasmid monomerization and stability. Cell 36: 1097–1103

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sherratt, D.J. (1993). Site-Specific Recombination and the Segregation of Circular Chromosomes. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77950-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77950-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77952-7

  • Online ISBN: 978-3-642-77950-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics