Skip to main content

Study of Oligosaccharide-Lectin Interaction by Various Nuclear Magnetic Resonance (NMR) Techniques and Computational Methods

  • Chapter
Lectins and Glycobiology

Part of the book series: Springer Laboratory ((SLM))

Abstract

Various Nuclear Magnetic Resonance (NMR) techniques in combination with computational methods are successfully used for elucidation of the structure of biomolecules in solution. These powerful methods are necessary if one wants to study and understand biomolecular interaction processes on an atomic level. In this chapter we introduce methods which are suitable for a study of lectin-oligosaccharide interaction on this level. The first step is assignment of the proton resonances, which can be done with multidimensional methods if the spectra have a high resolution (Fig. la). Nuclear Overhauser Effect (NOE) intensities are the most important source of structural information in NMR because of their distance dependence. The dihedral angles between vicinal coupled protons can be determined from scalar coupling constants with the help of the Karplus curve (Karplus 1959; Bystrow 1976). The Transfer NOE (TrNOE) experiment is a special nuclear Overhauser experiment, which gives information about the conformation of a small ligand bound to a receptor. This experiment is especially useful if the receptor molecule is very large and only broad, nonresolved NMR signals (Fig. lb) can be obtained. Computer modeling, especially computer calculations like Molecular Dynamics (MD), are complementary methods used to test the results of the NMR study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrand JP, Birdsall B, Feeney J, Roberts GCK, Burgen ASV (1979) The use of transferred nuclear Overhauser effects in the study of the conformations of small molecules bound to proteins. Int J Biol Macromol 1: 37–41

    Article  CAS  Google Scholar 

  • Bevilacqua VL, Thomson DS, Prestegard JH (1990) Conformation of methyl β-lactoside bound to ricin B-Chain: interpretation of transferred nuclear Overhauser effects facilitated by spin simulation and selective deuteration. Biochemistry 29: 5529–5537

    Article  PubMed  CAS  Google Scholar 

  • Boelens R, Koning TMG, van der Marel GA, van Boom JH, Kaptein R (1989) Iterative procedure for structure determination from proton-proton NOEs using a full relaxation matrix approach. Application to a DNA octamer. J Magn Reson 82: 290–308

    CAS  Google Scholar 

  • Bonvin AMJJ, Boelens R, Kaptein R (1991) Direct NOE refinement of biomolecular structures using 2D NMR data. J. Biomol NMR 1: 305–309

    Article  PubMed  CAS  Google Scholar 

  • Bystrow VF (1976) Spin-spin coupling and the conformational states of peptide systems. Progress in NMR Spectroscopy 10: 41–81

    Article  Google Scholar 

  • Clore GM, Gronenborn AM (1983) Theory of time-dependent transferred nuclear Overhauser effect: applications to structural analysis of ligand-protein complexes in solution. J Magn Reson 53: 423–442

    CAS  Google Scholar 

  • Cumming DA, Carver JP (1987) Virtual and solution conformations of oligosaccharides. Biochemistry 26: 6664–6676

    Article  PubMed  CAS  Google Scholar 

  • Dabrowski J (1987) Application of two-dimensional NMR methods in the structural analysis of oligosaccharides and other complex carbohydrates. In: Croasmun WR and Carlson RMK (eds) Two-dimensional NMR spectroscopy, Verlag Chemie, Weinheim, pp 349–386 (Methods in stereochemical analysis, Vol. 9)

    Google Scholar 

  • Dabrowski J (1989) Two-dimensional proton magnetic resonance spectroscopy. Meth Enzymol 179: 122–156

    Article  PubMed  CAS  Google Scholar 

  • Dabrowski J, Poppe L, Siebert HC, v d Lieth CW (1990) Conformational equilibria of oligosaccharides as determined by rotating frame 1H-NMR spectroscopy and confirmed by molecular dynamics simulations. In:Bethge K (ed) Structure and conformational dynamics of biomacromolecules. Europhysics Conference Abstracts 14H, European Physical Society, High Tatras, p 45

    Google Scholar 

  • Ernst RR, Bodenhausen, G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press, Oxford

    Google Scholar 

  • Gilboa-Garber N (1982) Pseudomonas aeruginosa lectins. Meth Enzymol 83: 378–385

    Article  PubMed  CAS  Google Scholar 

  • Griesinger C, Sorensen OW, Ernst RR (1989) Three-dimensional Fourier spectroscopy. Application to high resolution NMR. J Magn Reson 84:14–63

    CAS  Google Scholar 

  • van Gunsteren WF (1988) The role of computer simulation techniques in protein engineering. Protein Engineering 2, 1: 5–13

    Article  PubMed  Google Scholar 

  • Hagler AT, Huber E, Lifson S (1974) Energy functions for peptides and proteins. Deviation of a consistent force field including the hydrogen bond for amide crystals. J Am Chem Soc 96: 5316–5327

    Google Scholar 

  • Kaptein R, Dijkstra K, Nicolay K (1978) Laser photo-CIDNP as a surface probe for proteins in solution. Nature 274: 293–294

    Article  PubMed  CAS  Google Scholar 

  • Kaptein R (1982) Photo CIDNP studies of proteins. In: Berliner LJ (ed) Biological magnetic resonance, Vol. 4, Plenum, New York, pp. 145–191

    Google Scholar 

  • Kaptein R, Boelens R, Scheek RM, van Gunsteren WF (1988) Protein structures from NMR. Biochemistry 27: 5389–5395

    Article  PubMed  CAS  Google Scholar 

  • Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30: 11–15

    Article  CAS  Google Scholar 

  • Neuhaus D, Williamsen MP (1989) The nuclear Overhauser effect in structural and conformational analysis. VCH Publishers, New York

    Google Scholar 

  • Noggle JH, Schirmer RE (1971) The nuclear Overhauser effect - chemical applications. Academic Press, New York

    Google Scholar 

  • Oschkinat H, Schott K, Bacher A (1992) Conformation of 6,7-dimethyl-8-ribityllumazine bound to ß- subunits of heavy riboflavin synthase: transferred nuclear Overhauser effect studies employing ω1– 13C-filtered NOESY including a novel technique for zero quantum suppression. J Biomol NMR 2: 19–32

    Article  CAS  Google Scholar 

  • Poppe L, Dabrowski J, v d Lieth CW, Koike K, Ogawa T (1990a) Three-dimensional structure of the oligosaccharide terminus of globotriaosylceramide and isoglobotriaosylceramide in solution. Eur J Biochem 189: 313–325

    Article  PubMed  CAS  Google Scholar 

  • Poppe L, v d Lieth CW, Dabrowski J (1990b) Conformation of the glycolipid globoside head group in various solvents and in micelle-bound state. J Am Chem Soc 112: 7762–7771

    Article  CAS  Google Scholar 

  • Quiocho FA (1989) Protein-carbohydrate interactions: basic molecular features. Pure & Appl Chem 61,7: 1293–1306

    Article  CAS  Google Scholar 

  • Rademacher TW, Parekh RB, Dwek RA (1988) Glycobiology. Annu Rev Biochem 57: 785–838

    Article  CAS  Google Scholar 

  • Reuter G, Schauer R (1987) Isolation and analysis of gangliosides with O-acetylated sialic acids. In: Rahmann, H (ed) Gangliosides and modulation of neuronal functions, NATO ASI Series H, Springer Verlag, Berlin Heidelberg New York, pp 155–167 (Cell biology, Vol. 7)

    Chapter  Google Scholar 

  • Schauer R (1982) Chemistry, metabolism and function of sialic acids. Adva Carbohydr Chem Biochem 40: 131–234

    Article  CAS  Google Scholar 

  • Siebert HC (1990) Konformationsanalyse verschiedener Ganglioside mit Hilfe von 1H-Kernersonanzmethoden und Computerberechnungen. Thesis, Heidelberg University

    Google Scholar 

  • Siebert HC, Reuter G, Schauer R, v d Lieth CW, Dabrowski J (1992a) Solution conformation of GM 3 gangliosides containing different sialic acid residues as revealed by NOE-based distance-mapping, and molecular mechanics and molecular dynamics calculations. Biochemistry 31: 6962–6971

    Article  PubMed  CAS  Google Scholar 

  • Siebert HC, Pouwels PJW, Kaptein R, Kamerling JP, Vliegenthart JFG (1992b) Study of the wheat germ agglutinin-oligosaccharid interaction by laser photo CIDNP experiments. Abstracts of the XVIth International Carbohydrate Symposium, 5–10 July 1992, Paris, France p 534

    Google Scholar 

  • Stuike-Prill R, Maier B (1990) A new force-field program for the calculation of glycopeptides and its application to a heptacosapeptide-decasaccharide of immunoglobolin Gj. Eur J Biochem 194: 903–913

    Article  PubMed  CAS  Google Scholar 

  • Vuister GW, de Waard P, Boelens R, Vliegenthart JFG, Kaptein R (1989) The use of 3D NMR in structural studies of oligosaccharides. J Am Chem Soc 111: 772–774

    Article  CAS  Google Scholar 

  • Wright CS (1984) Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J Mol Biol 178: 91–104

    Article  CAS  Google Scholar 

  • Wright CS (1990) 2.2 Ã… resolution structure analysis of two refined N-acetylneuraminyl-lactose-wheat germ agglutinin isolectin complexes. J Mol Biol 215: 635–651

    Article  PubMed  CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siebert, H.C., Kaptein, R., Vliegenthart, J.F.G. (1993). Study of Oligosaccharide-Lectin Interaction by Various Nuclear Magnetic Resonance (NMR) Techniques and Computational Methods. In: Gabius, HJ., Gabius, S. (eds) Lectins and Glycobiology. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77944-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77944-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77946-6

  • Online ISBN: 978-3-642-77944-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics