Skip to main content

Part of the book series: Springer Labor ((SPRINGER LABOR))

  • 491 Accesses

Zusammenfassung

Zahlreiche Mikroorganismen sind in der Lage, molekularen Stickstoff aus der Atmosphäre als Stickstoffquelle zu nutzen. Neben Bakterien der Gattungen Clostridium und Azotobacter wurden in den letzten Jahrzehnten vor allem anoxygene phototrophe Bakterien und viele Cyanobakterien, fakultative Anaerobier, autotrophe Bakterien, methylotrophe Bakterien, Desulfurikanten und Methanbildner mit der Fähigkeit, Stickstoff zu binden, entdeckt (Schlegel 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Burris RH (1974) Methodology. In: Quispel A (ed) The Biology of Nitrogen Fixation. North-Holland Publishing Company, Amsterdam, p 9

    Google Scholar 

  • Habte M (1983) Apparatus for the nitrogenase (C2H2 - C2H4) assay of intact whole plantsoil systems. Soil Biol Biochem 15:719–720

    Article  CAS  Google Scholar 

  • Hardy RW, Burns RC, Holsten RD (1973) Application of acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • Hardy RWF, Holsten RD (1977) Methods for measurement of dinitrogen fixation. In: Hardy RWI, Gibson AH (eds) A Treatise on Dinitrogen Fixation. Section IV: Agronomy and Ecology. John Wiley & Sons, New York, p 451

    Google Scholar 

  • Masterson CL, Murphy PM (1980) The acetylene reduction technique. In: Subba Rao NS (ed) Recent Advances in Biological Nitrogen Fixation. Edward Arnold Publ, London, p 8

    Google Scholar 

  • Nohrstedt HÖ (1983) Natural formation of ethylene in forest soils and methods to correct results given by the acetylene reduction assay. Soil Biol Biochem 15:281–286

    Article  CAS  Google Scholar 

  • Nohrstedt HÖ (1984) Carbon monoxide as an inhibitor of N2-ase activity (C2H2) in control measurements of endogenous formation of ethylene by forest soils. Soil Biol Biochem 16:19–22

    Article  CAS  Google Scholar 

  • Paul EA (1975) Recent studies using the acetylene-reduction technique as an assay for field nitrogen fixation levels. In: Stewart WDP (ed) Nitrogen Fixation by Free-living Micro-organisms. Cambridge Univ Press, p 259

    Google Scholar 

  • Schlegel (1992) Allgemeine Mikrobiologie, 7. Auflage. Georg Thieme Verlag, Stuttgart New York

    Google Scholar 

  • Stewart WDP, Fitzgerald GP, Burris RH (1967) In situ studies on N2-fixation using the acetylene reduction technique. Proc Nat Acad Sci (Wash) 58:2071–2078

    Article  CAS  Google Scholar 

  • Stutz RC and Bliss LC (1973) Acetylene reduction assay for nitrogen fixation under field conditions in remote areas. Plant and Soil 38:209–213

    Article  CAS  Google Scholar 

  • Tann CC, Skujins J (1985) Soil nitrogenase assay by 14C2H2 reduction: Comparison with the carbon monoxide inhibition method. Soil Biol Biocnem 17:109–112

    Article  CAS  Google Scholar 

  • Turner GL, Gibson AH (1980) Measurement of nitrogen fixation by indirect means. In: Bergersen FJ (ed) Methods for Evaluation of Biological Nitrogen Fixation. John Wiley and Sons, New York, p 111

    Google Scholar 

Literatur

  • Hardy RW, Burns RC, Holsten RD (1973) Application of acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • Holzmann H (1984) Die Bedeutung freilebender, N2-fixierender Bakterien für den Stickstoffhaushalt eines Caricetum curvulae der oberen alpinen Stufe. Dissertation Universität Innsbruck

    Google Scholar 

Literatur

  • Nohrstedt HÖ (1983) Natural formation of ethylene in forest soils and methods to correct results given by the acetylene reduction assay. Soil Biol Biochem 15:281–286

    Article  CAS  Google Scholar 

  • Nohrstedt HÖ (1984) Carbon monoxide as an inhibitor of N2-ase activity (C2H2) in control measurements of endogenous formation of ethylene by forest soils. Soil Biol Biochem 16:19–22

    Article  CAS  Google Scholar 

Literatur

  • Bergersen FJ (1980) Measurement of nitrogen fixation by direct means. In: Bergersen FJ (ed) Methods for Evaluating Biological Nitrogen Fixation. John Wiley and Sons, New York, p 66

    Google Scholar 

  • Nohrstedt HÖ (1983) Conversion factor between acetylene reduction and nitrogen fixation in soil: effect of water content and nitrogenase activity. Soil Biol Biochem 15:275–279

    Article  CAS  Google Scholar 

  • Skujins J, Tann CC, Börjesson I (1987) Dinitrogen fixation in a montane forest were determined by 15N2 assimilation and in situ acetylene-reduction methods. Soil Biol Biochem 19:465–471

    Article  Google Scholar 

  • Swaby RJ, Passey BI (1953) A simple microrespirometer for studies in soil microbiology. Aust J Agric Res 4:334–339

    Article  CAS  Google Scholar 

Literatur

  • Keeney DR (1982) Nitrogen-availability indices. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 711

    Google Scholar 

Literatur

  • Binkley D (1984) Ion exchange resin bags: factors affecting estimates of nitrogen availability. Soil Sci Soc Am 48:1181–1184

    Article  CAS  Google Scholar 

  • Hübner C, Redl G, Wurst F (1991) In situ methodology for studying N-mineralisation in soils using anionen exchange resins. Soil Biol Biochem 23:701–702

    Article  Google Scholar 

  • Raison RJ, Connell MJ, Khanna PK (1987) Methodology for studying fluxes of soil Mineral-N in situ. Soil Biol Biochem 19:521–530

    Article  CAS  Google Scholar 

Literatur

  • Beck T (1983) Die N-Mineralisation von Böden im Laborbrutversuch. Z Pflanzenernaehr Bodenkd 146:243–252

    Article  CAS  Google Scholar 

Literatur

  • Campbell CA (1978) Soil organic carbon, nitrogen and fertility. In: Schnitzer M, Khan SV (eds) Soil Organic Matter. Developments in Soil Science 8. Elsevier Sci Pub Co, New York, p 173

    Google Scholar 

  • Keeney DR (1982) Nitrogen-availability indices. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 711

    Google Scholar 

  • Kohl A (1989) Zur Bedeutung des leicht mobilisierbaren Bodenstickstoffs bei der Prognose des N-Düngerbedarfs von Zuckerrüben unter besonderer Berücksichtigung der mittels Elektroultrafiltration (EUF) erfaßbaren Norg-Fraktion. Dissertation Rheinische Friedrich-Wilhelms-Universität Bonn

    Google Scholar 

  • Loll MJ und Bollag JM (1983) Protein transformation in soil. Adv Agron 36:351–381

    Article  CAS  Google Scholar 

  • Waring SA, Bremner JM (1964) Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201:951–952

    Article  CAS  Google Scholar 

Literatur

  • Beck T (1979) Die Nitrifikation in Böden (Sammelreferat). Z Pflanzenernaehr Bodenkd 142:344–364

    Article  CAS  Google Scholar 

  • Beck T (1983) Die N-Mineralisation von Böden im Laborbrutversuch. Z Pflanzenernaehr Bodenkd 146:243–252

    Article  CAS  Google Scholar 

  • Belser LW, Mays EL (1980) Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Appl Environ Microbiol 39:505–510

    PubMed  CAS  Google Scholar 

  • Berg P, Rosswall T (1985) Ammonium oxidizer numbers, potential and actual oxidation rates in two Swedish arable soils. Biol Fert Soils 1:131–140

    Article  CAS  Google Scholar 

  • Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. Adv Microbiol Ecol 1:135–214

    CAS  Google Scholar 

  • Kandeler E (1989) Aktuelle und potentielle Nitrifikation im Kurzzeitbebrütungsversuch. VDLUFA-Schriftreihe 28, Kongreßband Teil 11:921–931

    Google Scholar 

  • Killham K (1987) A new perfusion system for the measurement and characterization of potential rates of soil nitrification. Plant and Soil 97:267–272

    Article  CAS  Google Scholar 

  • Robertson GP (1982) Nitrification in forested ecosystems. Phil Trans R Soc Lond 296:445–447

    Article  Google Scholar 

  • Schimel EL, Firestone MK, Killham KS (1984) Identification of heterotrophic nitrification in a Sierran forest soil. Appl Environ Microbiol 48:802–806

    PubMed  CAS  Google Scholar 

  • Schmidt EL (1973) Fluorescent antibody techniques for the study of microbial ecology. Bull Ecol Res Commun 17:67–76

    Google Scholar 

  • Schmidt EL (1982) Nitrification in soil. In: Stevenson FJ (ed) Nitrogen in Agricultural Soils. Agronomy 22:253–288

    Google Scholar 

  • Schmidt EL, Belser LW (1982) Nitrifying bacteria. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wiscinson US, p 1027

    Google Scholar 

Literatur

  • Berg P, Rosswall T (1985) Ammonium oxidizer numbers, potential and actual oxidation rates in two Swedish arable soils. Biol Fert Soils 1:131–140

    Article  CAS  Google Scholar 

Literatur

  • Beck T (1976) Verlauf und Steuerung der Nitrifikation in Bodenmodellversuchen. Landwirtsch Forschung 30:85–94

    Google Scholar 

  • Beck T (1979) Die Nitrifikation in Böden (Sammelreferat). Z Pflanzenernaehr Bodenkd 142:344–364

    Article  CAS  Google Scholar 

  • Berg P, Rosswall T (1989) Abiotic factors regulating nitrification in a Swedish arable soil. Biol Fertil Soils 8:247–254

    Article  CAS  Google Scholar 

Literatur

  • Chichester FW, Smith SJ (1978) Disposition of 15N labeled fertilizer nitrate applied during corn culture in field lysimeters. J Environ Qual 7:227–232

    Article  CAS  Google Scholar 

  • Colbourn P, Harper JW (1987) Denitrification in drained and undrained arable clay soil. J Soil Sci 38:531–539

    Article  CAS  Google Scholar 

  • Nieder R, Schollmayer G, Richter J (1989) Denitrification in the rooting zone of cropped soils with regard to methodology and climate: A review. Biol Fertil Soils 8:219–226

    Article  CAS  Google Scholar 

  • Rolston DE, Sharpley AN, Toy DW, Broadbent FE (1982) Field measurement of denitrifikation: III Rates during irrigation cycles. Soil Sci Soc Am J 46:289–296

    Article  CAS  Google Scholar 

  • Ryden JC, Lund LJ, Focht DD (1979) Direct measurement of denitrification loss from soils: I Laboratory evaluation of acetylene inhibition of nitrous oxide reduction. Soil Sci Soc Am J 43:104–110

    Article  CAS  Google Scholar 

  • Tiedje JM (1982) Denitrification. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 1011

    Google Scholar 

Literatur

  • Ryden JC, Lund LJ, Focht DD (1979a) Direct measurement of denitrification loss from soils: I Laboratory evaluation of acetylene inhibition of nitrous oxide reduction. Soil Sci Soc Am J 43:104–110

    Article  CAS  Google Scholar 

  • Ryden JC, Lund LJ, Focht DD (1979b) Direct measurement of denitrification loss from soils: II Development and application of field methods. Soil Sci Soc Am J 43:110–118

    Article  CAS  Google Scholar 

  • Wilhelm E, Battino R, Wilcock RJ (1977) Low pressure solubility of gases in liquid water. Chem Rev 77:219–262

    Article  CAS  Google Scholar 

Literatur

  • Abdelmagid HM, Tabatabai MA (1987) Nitrate reductase activity of soils. Soil Biol Biochem 19:421–427

    Article  CAS  Google Scholar 

  • Alef K, Kleiner D (1986) Arginine ammonification, a simple method to estimate microbial activity potentials in soils. Soil Biol Biochem 18:233–235

    Article  CAS  Google Scholar 

  • Alef K, Kleiner D (1987) Applicability of arginine ammonification as indicator of microbial activity in different soils. Biol Fertil Soils 5:148–151

    Article  CAS  Google Scholar 

  • Beck T (1973) Über die Eignung von Modellversuchen bei der Messung der biologischen Aktivität von Böden. Bayer Landw Jb 50:270–288

    Google Scholar 

  • Cooper GS, Smith RL (1963) Sequence of products formed during denitrification in some diverse Western soils. Soil Sci Soc Am Proc 27:659–662

    Article  CAS  Google Scholar 

  • Douglas LA, Bremner JM (1970) Colorimetric determination of microgram quantities of urea. Anal Lett 3:79–87

    Article  CAS  Google Scholar 

  • Frankenberger WT, Johanson JB (1982) L-histidine ammonia-lyase activity in soils. Soil Sci Soc Am J 46:943–948

    Article  CAS  Google Scholar 

  • Hoffmann G, Teicher K (1957) Das Enzymsystem unserer Kulturböden VII, Proteasen II. Z Pflanzenernaehr Bodenkd 77:243–251

    Article  CAS  Google Scholar 

  • Kandeler E (1986) Aktivität von Proteasen und ihre Bestimmungsmöglichkeiten. VDLUFA-Schriftreihe Kongreßband 20:829–847

    Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    Article  CAS  Google Scholar 

  • Ladd JN (1972) Properties of proteolytic enzymes extracted from soil. Soil Biol Biochem 4:227–237

    Article  CAS  Google Scholar 

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30

    Article  CAS  Google Scholar 

  • Loll MJ, Bollag JM (1983) Protein transformation in soil. Adv Agron 36:351–383

    Article  CAS  Google Scholar 

  • Mayaudon J, Batistic L, Sarkar JM (1975) Properties of proteolytically active extracts from fresh soils. Soil Biol Biochem 7:281–286

    Article  CAS  Google Scholar 

  • Omura H, Sato F, Hayano K (1983) A method for estimation of L-glutaminase activity in soils. Soil Sci Plant Nutr 29:295–303

    CAS  Google Scholar 

  • Ross DJ, Speir TW, Giltrap DJ, McNeilly BA, Molloy LF (1975) A principal components analysis of some biochemical activities in a climosequence of soils. Soil Biol Biochem 7:349–355

    Article  CAS  Google Scholar 

  • Sarkar JM, Batistic L, Mayaudon J (1980) Les hydrolases du sol et leur association avec les hydrates de carbone. Soil Biol Biochem 12:325–328

    Article  CAS  Google Scholar 

  • Skujins JJ, Mc Laren AD (1969) Assay of urease activity using 14C-urea in stored, geologically preserved, and in irradiated soils. Soil Biol Biochem 4:479–487

    Google Scholar 

  • Speir TW, Ross DJ (1981) A comparison of the effects of air-drying and aceton dehydration on soil enzyme activities. Soil Biol Biochem 13:225–229

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1972) Assay of urease activity in soils. Soil Biochem 4:479–487

    Article  CAS  Google Scholar 

  • Tena M, Pinilla JA, Magallanes M (1986) L-phenylalanine deaminating activity in soil. Soil Biol Biochem 18:321–325

    Article  CAS  Google Scholar 

  • Watt GW, Crispp JD (1954) Spectrophotometric method for determination of urea. Anal Chem 26:452–453

    Article  CAS  Google Scholar 

Literatur

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30

    Article  CAS  Google Scholar 

Literatur

  • Alef K, Kleiner D (1986) Arginine am mortification, a simple method to estimate microbial activity potentials in soils. Soil Biol Biochem 18:233–235

    Article  CAS  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    Article  CAS  Google Scholar 

Literatur

Literatur

  • Abdelmagid HM, Tabatabai MA (1987) Nitrate reductase activity of soils. Soil Biol Biochem 19:421–427

    Article  CAS  Google Scholar 

  • Fu MH, Tabatabai MA (1989) Nitrate reductase activity in soils: Effects of trace elements. Soil Biol Biochem 21:943–946

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zechmeister-Boltenstern, S., Kandeler, E., Bauernfeind, G., Öhlinger, R. (1993). Stickstoffkreislauf. In: Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R. (eds) Bodenbiologische Arbeitsmethoden. Springer Labor. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77936-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77936-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77937-4

  • Online ISBN: 978-3-642-77936-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics