Skip to main content

Mikrobielle Biomasse

  • Chapter
  • 538 Accesses

Part of the book series: Springer Labor ((SPRINGER LABOR))

Zusammenfassung

Mikroorganismen kommen im Boden in großer Vielfalt und hoher Dichte vor. Bakterien und Pilze stellen die Masse der Mikroorganismen, Protozoen und Algen sind meist in geringer Anzahl vorhanden. Der Anteil des Biomasse-Kohlenstoffes am organischen Kohlenstoff eines Bodens wird mit 1–3% angegeben (Sparling 1985). Vergleichende Biomasseuntersuchungen wirtschaftlich genutzter Böden in Bayern zeigten, daß der Anteil der stoffwechselaktiven mikrobiellen Biomasse an der organischen Substanz des Bodens in Ackerböden 1–5% und in Wiesenböden 2–8% beträgt (Beck et al. 1992). Aufgrund von Biomassebestimmungen mittels mathematischer Analyse von Respirationskurven sollen sich lediglich 2–30% der gesamten Biomasse in einem aktiven Zustand befinden (Van de Werf und Verstraete 1987a, 1987b). Die Leistungen der Bodenmikroflora sind für die Bodenfruchtbarkeit und das Funktionieren von Ökosystemen vielfältig und entscheidend:

  • Abbauleistungen: Mineralisation pflanzlicher, tierischer, mikrobieller und organisch-synthetischer Substanzen, Mobilisierung anorganischer Nährund Spurenstoffe

  • Syntheseleistungen: Aufbau mikrobieller Biomasse, Synthese von Huminstoffen und bodenbindenden Substanzen, Immobilisierung von Nährstoffen

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Beck T, Capriel P, Müller C (1992) Das Bodenbeobachtungsprogramm der LBP. Ergebnisse humuschemischer und bodenmikrobiologischer Untersuchungen. Bayer Staatsm f Ernähr, Landwirtsch und Forsten, Schule und Beratung 01/1992

    Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil Biochemistry, Vol 5. Marcel Dekker Inc, New York, p 415

    Google Scholar 

  • Sparling GP (1985) The soil biomass. In: Vaughan D, Malcolm RE (eds) Soil Organic Matter and Biological Activity. Martinus Nijhoff/Dr W Junk Publ, Dordrecht Boston Lancaster, p 223

    Chapter  Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotzky G, Bollag JM (eds) Soil Biochemistry, Vol 7. Marcel Dekker Inc, New York, p 229

    Google Scholar 

  • Van de Werf H, Verstraete W (1987a) Estimation of active soil microbial biomass by mathematical analysis of respiration curves: development and verification of the model. Soil Biol Biochem 19:253–260

    Article  Google Scholar 

  • Van de Werf H, Verstraete W (1987b) Estimation of active soil microbial biomass by mathematical anlysis of respiration curves: calibration of the test procedure. Soil Biol Biochem 19:261–265

    Article  Google Scholar 

Literatur

  • Dunger W, Fiedler HJ (1989) Methoden der Bodenbiologie. Gustav Fischer Verlag, Stuttgart New York

    Google Scholar 

  • Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA

    Google Scholar 

  • Trolldenier G (1973) The use of fluorescence microscopy for counting soil microorganisms. Bull Ecol Res Committee, Stockholm 17:53–59

    Google Scholar 

Literatur

  • Clarholm M, Rosswall T (1979) Biomass and turnover of bacteria in a forest soil and a peat. Soil Biol Biochem 12:49–57

    Article  Google Scholar 

  • Lehner A, Nowak W, Seibold L (1958) Eine Weiterentwicklung des Boden-Fluorochromierungsverfahrens mit Acridinorange zur Kombinationsmethode. Landw Forsch 11:121–127

    Google Scholar 

  • Strugger S (1949) Fluoreszenzmikroskopie und Mikrobiologie. Schaper Verlag, Hannover

    Google Scholar 

  • Trolldenier G (1965) Fluorescenzmikroskopische Untersuchung der Rhizosphäre. Landw Forsch 19 (Sonderheft):110–115

    Google Scholar 

  • Trolldenier G (1972) Fluoreszenzmikroskopische Zählung von Bodenbakterien. I. Historischer Überblick und Beschreibung eines Verfahrens zur Zählung von Bodenbakterien in Trockenpräparaten nach Färbung mit Acridinorange. Zbl Bakt II 127:25–40

    Google Scholar 

  • Trolldenier G (1973) The use of fluorescence microscopy for counting soil microorganisms. Bull Ecol Res Committee Stockholm 17:53–59

    Google Scholar 

  • Trolldenier G, Schäfer P (1972) Fluoreszenzmikroskopische Zählung von Bodenbakterien. II. Biometrische Betrachtungen über ein Verfahren zur Zählung von Bodenbakterien in Trockenpräparaten. Zbl Bakt II 127:41–50

    Google Scholar 

Literatur

  • Hirsch CF, Christensen DL (1983) Novel method for selective isolation of actinomycetes. Applied Environ Microbiol 46:925–929

    CAS  Google Scholar 

  • Trolldenier G (1966) Über die Eignung Erde enthaltender Nährsubstrate zur Zählung und Isolierung von Bodenmikroorganismen auf Membranfiltern. Zbl Bakteriol Abt II 20:496–508

    Google Scholar 

  • Trolldenier G (1967) Isolierung und Zählung von Bodenactinomyceten auf Erdplatten mit Membranfiltern. Plant and Soil 27: 285–288

    Article  Google Scholar 

  • Trolldenier G (1971) Einfluß der Kalium- und Stickstoffernährung von Weizen auf die Bakterienbesiedlung der Rhizosphäre. Landw Forsch 26/11 Sonderheft: 37–46

    Google Scholar 

  • Wollum II AG (1982) Cultural methods for soil microorganisms. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 781

    Google Scholar 

Literatur

  • Alexander M (1982) Most probable number method for microbial populations. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 815

    Google Scholar 

  • Dunger W, Fiedler HJ (1989) Methoden der Bodenbiologie. Gustav Fischer Verlag, Stuttgart New York

    Google Scholar 

Literatur

  • Benckiser G, Syring KM (1992) Denitrifikation in Agrarstandorten. BioEngineering 8:46–52

    CAS  Google Scholar 

  • Rheinbaben von W (1990) Nitrogen losses from agricultural soils through denitrification — a critical evaluation. Z Pflanzenernaehr Bodenkd 153:157–166

    Article  Google Scholar 

  • Tiedje JM (1982) Denitrification. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 1011

    Google Scholar 

Literatur

  • Keeney DR, Nelson DW (1982) Nitrogen — inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 645

    Google Scholar 

Literatur

  • Molina JAE, Rovira AD (1964) The influence of plant roots on autotrophic nitrifying bacteria. Can J Microbiol 10:249–257

    Article  Google Scholar 

  • Schmidt EL (1982) Nitrification in soils. In: Stevenson FJ (ed) Nitrogen in Agricultural Soils. Am Soc Agron Inc, Madison Wisconsin USA, p 253

    Google Scholar 

  • Schmidt EL, Belser LW (1982) Nitrifying bacteria. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 1027

    Google Scholar 

  • Brown ME, Burlingham SK, Jackson RM (1962) Studies on Azotobacter species in soil. I. Comparison of media and techniques for counting Azotobacter in soil. Plant and Soil 17:309–319

    Article  Google Scholar 

  • Döbereiner J, Day JM (1974) Associative symbioses on tropical grasses: Characterization of microorganisms and dinitrogen-fixing sites. In: Newman WE, Nyman CJ (eds) Proceedings 1st Intern Symposium on Nitrogen Fixation, Vol. 2. Washington State Univ Press, Pullman, p 518

    Google Scholar 

  • Knowles R (1982) Free-living dinitrogen-fixing bacteria. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 1071

    Google Scholar 

  • Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14

    Article  PubMed  CAS  Google Scholar 

  • Trolldenier G (1977) Influence of some environmental factors on nitrogen fixation in the rhizosphere of rice. Plant and Soil 47:203–217

    Article  CAS  Google Scholar 

  • Watanabe I, Barraquio WL, De Guzman MR, Cabrera DA (1979) Nitrogen-fixing (acetylene reduction) activity and population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland rice. Appl Environ Microbiol 37:813–819

    PubMed  CAS  Google Scholar 

Literatur

  • Bohlool BB, Schmidt EL (1980) The Immunofluorescence Approach in Microbial Ecology. In: Alexander M (ed) Advances in Microbial Ecology 4. Academic Press, London New York, p 203

    Google Scholar 

  • Schloter M, Bode W, Hartmann A, Beese F (1992) Sensitive chemoluminescence based quantification of bacteria in soil extracts with monoclonal antibodies. Soil Biol Biochem 24:399–403

    Article  Google Scholar 

  • Galfre G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Meth Enzymol 73:3–46

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor New York

    Google Scholar 

  • Levanony H, Bashan Y (1990) Avidin-biotin complex incorporation into enzyme linked immunosorbent assay (ABELISA) for improving the detection of Azospirillum brasilense cd. Current Microbiol 20:91–94

    Article  CAS  Google Scholar 

  • Schloter M, Bode W, Hartmann A (1992a) Characterization of monoclonal antibodies against cell surface structures of Azospirillum brasilense Sp7 using ELISA techniques. Symbiosis 13:37–45

    CAS  Google Scholar 

  • Schloter M, Bode W, Hartmann A, Beese F (1992b) Sensitive chemoluminescence based quantification of bacteria in soil extracts with monoclonal antibodies. Soil Biol Biochem 24:399–403

    Article  Google Scholar 

Literatur

  • Parkinson D (1982) Filamentous fungi. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 949

    Google Scholar 

  • Parkinson D, Coleman DC (1991) Microbial comunities, activity and biomass. Agric Ecosystems Environm 34:3–33

    Article  Google Scholar 

  • West AW, Grant WD, Sparling GP (1987) Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil Biol Biochem 19:607–612

    Article  CAS  Google Scholar 

  • Zelles L, Hund K, Stepper K (1987) Methoden zur relativen Quantifizierung der pilzlichen Biomasse im Boden. Z Pflanzenernaehr Bodenkd 150:249–252

    Article  CAS  Google Scholar 

Literatur

  • Zelles L, Hund K, Stepper K (1987) Methoden zur relativen Quantifizierung der pilzlichen Biomasse im Boden. Z Pflanzenernaehr Bodenkd 150:249–252

    Article  CAS  Google Scholar 

Literatur

  • Anderson JPE, Domsch KH (1978) Mineralization of bacteria and fungi in chloroform fumigated soils. Soil Biol Biochem 10:207–213

    Article  CAS  Google Scholar 

  • Chapman SJ (1987) Inoculum in the fumigation method for soil biomass determination. Soil Biol Biochem 19:83–87

    Article  Google Scholar 

  • Hintze T, Gehlen P, Schröder D (1991) Über die Gültigkeit der mikrobiellen Biomassebestimmung für Ackerböden und Waldböden. Mitt Deut Bodenkundl Ges 66:503–506

    Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil Biochemistry, Vol 5. Marcel Dekker Inc, New York, p 415

    Google Scholar 

  • Jenkinson DS, Powlson DS (1976a) The effects of biocidal treatments on metabolism in soil — I. Fumigation with chloroform. Soil Biol Biochem 8:167–177

    Article  CAS  Google Scholar 

  • Jenkinson DS, Powlson DS (1976b) The effects of biocidal treatments on metabolism in soil — II. Gamma irradiation, autoclaving, air-drying and fumigation. Soil Biol Biochem 8:179–188

    Article  Google Scholar 

  • Jenkinson DS, Powlson DS (1976c) The effects of biocidal treatments on metabolism in soil — III. The relationship between soil biovolume, measured by optical microscopy and the flush of decomposition caused by fumigation. Soil Biol Biochem 8:189–202

    Article  CAS  Google Scholar 

  • Jenkinson DS, Powlson DS (1976d) The effects of biocidal treatments on metabolism in soil — IV. The decomposition of fumigated organisms in soil. Soil Biol Biochem 8:203–208

    Article  CAS  Google Scholar 

  • Jenkinson DS, Powlson DS (1976e) The effects of biocidal treatments on metabolism in soil — V. A method for measuring soil biomass. Soil Biol Biochem 8:209–213

    Article  CAS  Google Scholar 

  • Joergensen RG, Brookes PC (1991) Soil microbial biomass estimations by fumigation extraction. Mitt Deut Bodenkundl Ges 66:511–514

    Google Scholar 

  • Martens R (1985) Limitations in the application of the fumigation technique for biomass estimations in amended soils. Soil Biol Biochem 17:57–63

    Article  CAS  Google Scholar 

  • Sparling GP (1985) The soil biomass. In: Vaughan D, Malcolm RE (eds) Soil Organic Matter and Biological Activity. Martinus Nijhoff/Dr W Junk Publ, Dordrecht Boston Lancaster, p 223

    Chapter  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) Microbial biomass measurements in forest soils: determination of kC values and tests of hypotheses to explain the failure of the chloroform fumgation-incubation method in acid soils. Soil Biol Biochem 19:689–696

    Article  Google Scholar 

Literatur

  • Joergensen KG, Brookes PC (1990) Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biol Biochem 22:1023–1027

    Article  CAS  Google Scholar 

  • Ocio JA, Brookes PC (1990) An evaluation of methods for measuring microbial biomass in soils following recent additions of wheat straw and characterization of the biomass that develops. Soil Biol Biochem 22:685–694

    Article  Google Scholar 

  • Sparling GP, West AW (1988a) A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biol Biochem 20:337–343

    Article  CAS  Google Scholar 

  • Sparling GP, West AW (1988b) Modifications to the fumigation-extraction technique or permit simultaneous extraction and estimation of soil microbial C and N. Commun Soil Sci Plant Anal 19:327–344

    Article  CAS  Google Scholar 

  • Sparling GP, Feltham CW, Reynolds J, West AW, Singleton P (1990) Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the kEC-factor. Soil Biol Biochem 22:301–307

    Article  Google Scholar 

Literatur

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Shen SM, Pruden G, Jenkinson DS (1984) Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol Biochem 16:437–444

    Article  CAS  Google Scholar 

  • Vittori Antisari L, Ciavatta C, Sequi P (1990) Volatilization of ammonia during the chloroform fumigation of soil for measuring microbial biomass N. Soil Biol Biochem 22:225–228

    Article  CAS  Google Scholar 

Literatur

  • Amato M, Ladd JN (1988) Assay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soils. Soil Biol Biochem 20:107–114

    Article  CAS  Google Scholar 

  • Stevenson FJ (1982) Nitrogen-Organic Forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis, Part 2. Am Soc Agron Inc, Soil Sci Soc Am Inc, Madison Wisconsin USA, p 625

    Google Scholar 

Literatur

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

Literatur

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

Literatur

  • Alef K, Beck T, Zelles L, Kleiner D (1988) A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol Biochem 20:561–565

    Article  CAS  Google Scholar 

  • Parkinson D, Coleman DC (1991) Methods for assessing soil microbial populations, activity and biomass. Agric Ecosystems Environm 34:3–33

    Article  Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag JM, Stotzky G (eds) Soil Biochemistry, Vol 6. Marcel Dekker Inc, New York, p 357

    Google Scholar 

  • Sparling GP (1983) Estimation of microbial biomass and activity in soil using microcalorimetry. J Soil Sci 34:381–390

    Article  CAS  Google Scholar 

Literatur

  • Van de Werf H, Verstraete W (1987a) Estimation of active soil microbial biomass by mathematical analysis of respiration curves: development and verification of the model. Soil Biol Biochem 19:253–260

    Article  Google Scholar 

  • Van de Werf H, Verstraete W (1987b) Estimation of active soil microbial biomass by mathematical analysis of respiration curves: calibration of the test procedure. Soil Biol Biochem 19:261–265

    Article  Google Scholar 

  • Van de Werf H, Verstraete W (1987c) Estimation of active soil microbial biomass by mathematical analysis of respiration curves: relation to conventional estimation of total biomass. Soil Biol Biochem 19:267–271

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trolldenier, G. et al. (1993). Mikrobielle Biomasse. In: Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R. (eds) Bodenbiologische Arbeitsmethoden. Springer Labor. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77936-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77936-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77937-4

  • Online ISBN: 978-3-642-77936-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics