Skip to main content

The Roles of Knowledge and Representation in Problem Solving

  • Conference paper
Second Generation Expert Systems

Abstract

Knowledge and representation are separate, but equally important, concepts for designing and analyzing knowledge-based systems: knowledge describes what systems do, and representations are how they do it. Knowledge-based systems can be designed that utilize multiple knowledge sources (partitioned into different types or levels of abstraction) and multiple representations (specialized for particular inferences). This paper argues for the importance of distinguishing between the concepts of knowledge and representation, and describes advantages and pitfalls of using multiple knowledge sources and representations. Examples are presented of systems that use various combinations of knowledge and representation as their main sources of problem-solving power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Allen. Maintaining knowledge about temporal intervals. CACM, 26(11), 1983.

    Google Scholar 

  2. S. Amarel. On representations of problems of reasoning about actions. In D. Michie, editor, Machine Intelligence 3, pages 131–171. American Elsevier, 1968.

    Google Scholar 

  3. A. Barr and E. Feigenbaum. The Handbook of Artificial Intelligence, Vols. 1 and 2. William Kaufmann, 1981.

    Google Scholar 

  4. R. Brooks. Intelligence without representation. Artificial Intelligence, 47(1–3):139–160, 1991.

    Article  Google Scholar 

  5. B. Chandrasekaran. Towards a functional architecture for intelligence based on generic information processing tasks. In Proc. IJCAI-87, Milan, Italy, 1987.

    Google Scholar 

  6. D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333–377, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Clancey. The epistemology of a rule-based expert system: A framework for explanation. Artificial Intelligence, 20(3):215–251, 1983.

    Article  MathSciNet  Google Scholar 

  8. W. Clancey. Heuristic classification. Artificial Intelligence, 27:289–350, 1985.

    Article  Google Scholar 

  9. J.-M. David and J.-P. Krivine. Explaining reasoning from knowledge level models. In Proc. ECAI 90, 1990.

    Google Scholar 

  10. R. Davis. Diagnosis via causal reasoning: Paths of interaction and the locality principle. In Proc. AAAI’ 83, pages 88–94, Aug. 1983.

    Google Scholar 

  11. R. Davis, H. Shrobe, W. Hamscher, K. Wieckert, M. Shirley, and S. Polit. Diagnosis based on description of structure and function. In Proc. AAAI’ 82, pages 137–142, Aug. 1982.

    Google Scholar 

  12. R. Davis, H. Shrobe, and P. Szolovits. What is a knowledge representation? AI Magazine, Spring 1993.

    Google Scholar 

  13. T. Dean and D. McDermott. Temporal data base management. Artificial Intelligence, 32(1):1–55, 1987.

    Article  Google Scholar 

  14. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 49(1–3):61–96, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. deKleer. An assumption-based truth maintenance system. Artificial Intelligence, 28:127–162, 1986.

    Article  Google Scholar 

  16. J. Doyle and R. Patil. Two theses of knowledge representation. Artificial Intelligence, 48(3):261–279, 1991.

    Article  Google Scholar 

  17. L. Erman, F. Hayes-Roth, V. Lesser, and R. Reddy. The HEARSAY-II speech understanding system: Integrating knowledge to resolve uncertainty. Computing Surveys, 12(2):213–253, 1980.

    Article  Google Scholar 

  18. B. Faltings. A symbolic approach to qualitative kinematics. Artificial Intelligence, 56(2–3):139–170, 1992.

    Article  MathSciNet  Google Scholar 

  19. K. Forbus. Qualitative process theory. Artificial Intelligence, 24:85–168, 1984.

    Article  Google Scholar 

  20. K. Forbus, P. Nielson, and B. Faltings. Qualitative spatial reasoning: The CLOCK project. Artificial Intelligence, 51(1–3):417–471, 1991.

    Article  Google Scholar 

  21. M. Ginsberg and D. Geddis. Is there any need for domain-dependent control information? In Proc. National Conference on Artificial Intelligence, pages 452–457, Los Angeles, CA, July 1991.

    Google Scholar 

  22. W. Hamscher. Modeling digital circuits for troubleshooting. Artificial Intelligence, 51(1–3):223–272, 1991.

    Article  Google Scholar 

  23. B. Hayes-Roth, R. Washington, R. Hewett, M. Hewett, and A. Seiver. Intelligent monitoring and control. In Proc. International Joint Conference on AI, pages 243–249, Detroit, MI, August 1989.

    Google Scholar 

  24. D. Heckerman and E. Horvitz. The myth of modularity in rule-based systems. Technical Report KSL Memo 86-33, Stanford University, 1986.

    Google Scholar 

  25. Y. Iwasaki and H. Simon. Causality in device behavior. Artificial Intelligence, 29(1):3–32, 1986.

    Article  MathSciNet  Google Scholar 

  26. L. Joskowicz and E. Sacks. Computational kinematics. Artificial Intelligence, 51(1–3):381–416, 1991.

    Article  Google Scholar 

  27. W. Kornfeld and C. Hewitt. The scientific community metaphor. IEEE Transactions on Systems, Man, and Cybernetics, SMC-11(1), 1981.

    Google Scholar 

  28. P. Koton. Combining causal models and case-based reasoning. In J. M. David, J. P. Krivine, and R. Simmons, editors, Second Generation Expert Systems. Springer Verlag, 1993.

    Google Scholar 

  29. G. Kramer. A geometric constraint engine. Artificial Intelligence, 58(1–3):327–360, 1992.

    Article  MathSciNet  Google Scholar 

  30. B. Kuipers. Qualitative simulation. Artificial Intelligence, 24:289–338, 1984.

    Article  MathSciNet  Google Scholar 

  31. B. Kuipers and D. Berleant. Using incomplete quantitative knowledge in qualitative reasoning. In Proc. National Conference on Artificial Intelligence, St. Paul, MN, August 1988.

    Google Scholar 

  32. J. Laird, A. Newell, and P. Rosenbloom. Soar: An architecture for general intelligence. Artificial Intelligence, 33(3), 1987.

    Google Scholar 

  33. V. Lesser, J. Pavlin, and E. Durfee. Approximate processing in real-time problem solving. AI Magazine, 9(1):49–61, 1988.

    Google Scholar 

  34. H. Levesque and R. Brachman. Expressiveness and tractability in knowledge representation and reasoning. Computational Intelligence, 3:78–93, 1987.

    Article  Google Scholar 

  35. M. Lowry. The abstraction/implementation model of problem reformulation. In Proc. IJCAI-87, pages 1004–1010, Milan, Italy, 1987.

    Google Scholar 

  36. D. Marr. Vision. W.H. Freeman, 1982.

    Google Scholar 

  37. J. McDermott. R1: A rule-based configurer of computer systems. Artificial Intelligence, 19(1):39–88, 1982.

    Article  Google Scholar 

  38. S. Minton, J. Carbonell, et al. Explanation-based learning: A problem-solving perspective. Artificial Intelligence, 40:63–118, 1989.

    Article  Google Scholar 

  39. J. Moses. Algebraic simplification, a guide for the perplexed. CACM, 14(8):527–537, 1971.

    MathSciNet  MATH  Google Scholar 

  40. A. Newell. The knowledge level. Artificial Intelligence, 18:87–127, 1982.

    Article  Google Scholar 

  41. R. Patil. Causal representation of patient illness for electrolyte and acid-base diagnosis. Technical Report 267, Laboratory for Computer Science, Massachusetts Institute of Technology, 1981.

    Google Scholar 

  42. H. Pople. Heuristic methods for imposing structure on ill-structured problems. In P. Szolovits, editor, Artificial Intelligence in Medicine, pages 119–190. Westview Press, 1982.

    Google Scholar 

  43. O. Raiman. Order of magnitude reasoning. Artificial Intelligence, 51(1–3):11–38, 1991.

    Article  Google Scholar 

  44. S. Rowley, H. Shrobe, and R. Cassels. Joshua: Uniform access to heterogeneous knowledge structures. In Proc. AAAI-87, Seattle, WA, 1987.

    Google Scholar 

  45. Y. Shoham. Reasoning About Change: Time and Causation from the Standpoint of Artificial Intelligence. MIT Press, 1988.

    Google Scholar 

  46. E. Shortliffe. Computer Based Medical Consultations: MYCIN. American Elsevier, 1976.

    Google Scholar 

  47. B. Silver et al. A framework for integrating multiple heterogeneous learning agents. In J. M. David, J. P. Krivine, and R. Simmons, editors, Second Generation Expert Systems. Springer Verlag, 1993.

    Google Scholar 

  48. R. Simmons. Integrating multiple representations for incremental, causal simulation. In Proc. Conference on AI, Simulation, and Planning, pages 88–96, Cocoa Beach, FL, April 1991.

    Google Scholar 

  49. R. Simmons. The roles of associational and causal reasoning in problem solving. Artificial Intelligence, 53(2–3):159–208, February 1992.

    Article  MathSciNet  MATH  Google Scholar 

  50. R. Simmons. Generate, test and debug: A paradigm for combining associational and causal reasoning. In J. M. David, J. P. Krivine, and R. Simmons, editors, Second Generation Expert Systems. Springer Verlag, 1993.

    Google Scholar 

  51. R. Simmons and R. Davis. Representing and reasoning about change in geologic interpretation. Technical Report AI-TR-749, AI Lab, MIT, December 1983.

    Google Scholar 

  52. R. Simmons and J. Mohammed. Causal modeling of semiconductor fabrication. International Journal for Artificial Intelligence in Engineering, 4(1):2–21, Jan. 1989.

    Article  Google Scholar 

  53. L. Steels. The componential framework and its role in reusability. In J. M. David, J. P. Krivine, and R. Simmons, editors, Second Generation Expert Systems. Springer Verlag, 1993.

    Google Scholar 

  54. M. Stefik. Planning and meta-planning (MOLGEN: Part 2). Artificial Intelligence, 16:141–170, 1981.

    Article  Google Scholar 

  55. W. Swartout. Xplain: A system for creating and explaining expert consulting systems. Artificial Intelligence, 21(3):285–325, 1983.

    Article  Google Scholar 

  56. P. Torasso and L. Console. Diagnostic Problem Solving: Combining Heuristic, Approximate and Causal Reasoning. Van Nostrand Reinhold, 1989.

    Google Scholar 

  57. J. VanBaalen. Automated design of specialized representations. Artificial Intelligence, 54(1–2):121–198, 1992.

    Article  Google Scholar 

  58. D. Weld and J. deKleer, editors. Qualitative Reasoning About Physical Systems. Morgan Kaufmann, San Mateo, CA, 1990.

    Google Scholar 

  59. B. Wielinga, G. Schreiber, and J. Breuker. Kads: A modelling approach to knowledge engineering. Knowledge Acquisition, 4(1), 1992.

    Google Scholar 

  60. R. Wilensky. Planning and Understanding. Addison-Wesley, 1983.

    Google Scholar 

  61. D. Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm. Morgan Kaufmann, San Mateo, CA, 1988.

    Google Scholar 

  62. B. Williams. Qualitative analysis of MOS circuits. Technical Report 767, AI Lab, MIT, 1984.

    Google Scholar 

  63. B. Williams. Doing time: Putting qualitative reasoning on firmer ground. In Proc. AAAI’ 86, pages 105–112, Philadelphia, PA, Aug. 1986.

    Google Scholar 

  64. P. Winston. Artificial Intelligence. Addison-Wesley, Reading, MA, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simmons, R., Davis, R. (1993). The Roles of Knowledge and Representation in Problem Solving. In: David, JM., Krivine, JP., Simmons, R. (eds) Second Generation Expert Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77927-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77927-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77929-9

  • Online ISBN: 978-3-642-77927-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics