Skip to main content

Part of the book series: Texts in Theoretical Computer Science. An EATCS Series ((TTCS))

  • 141 Accesses

Abstract

Cellular automata and discrete neural networks constitute very simple and general models that seem to capture the fundamental features of a variety of highly complex systems. Their study offers the possibility of obtaining some understanding of the most important and characteristic properties of complex and self-organizing systems, the evolution of which currently appears chaotic, disorganized and beyond the scope of known laws of nature.

ArticleNote

By indirections finds directions out.

Hamlet

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Akira, M. Kimura: Decomposition phenomenon in one-dimensional scope- three tesselation automata with arbitrary number of states. Inf. and Control 34 (1977) 296–313.

    Article  MATH  Google Scholar 

  2. A. Akira, M. Kimura: Completeness in tesselation automata. Inf. and Control 35(1977) 52–86

    Article  MATH  Google Scholar 

  3. R. Bowen: Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971) 401–414

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Culik, S. Yu: Undecidability of CA classification schemes. Complex Systems 2 (1988) 177–190

    MathSciNet  MATH  Google Scholar 

  5. C. Fields: Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems. J. Expt. Theor. Artif. Intell. 1 (1989) 171–178

    Article  Google Scholar 

  6. M.R. Garey, D.S. Johnson: Computers and intractabillity: a guide to the theory of NP-completeness. W.H. Freeman, San Francisco, 1978

    Google Scholar 

  7. M. Garzon, A. Jagota: Efficient neural network isomorphism testing. In: Proc. 2nd Swedish Conference on Connectionism. Erlbaum Publishers, 1994.

    Google Scholar 

  8. M. Garzon, M. Zhang: Classifying neural networks. R.E. Trahan, Jr. (ed.). Proc. IEEE Southeast Conference, New Orleans, 1990, pp. 567–571

    Google Scholar 

  9. R. Gilman: Classes of linear automata. Ergodic Theo. and Dynam. Syst. 7 (1987) 108–118

    MathSciNet  Google Scholar 

  10. R. Gilman: Periodic behavior of linear automata. In: Dynamical systems. Lecture Notes in Mathematics, Vol. 1342. Springer-Verlag, Berlin, 1988, pp. 216–219

    Google Scholar 

  11. E. Goles, A. Maass, S. Martinez: On the limit set of some universal cellular automata. Theoret. Comput. Sci. 110:1 (1993) 53–78

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Gutowitz (ed.): Cellular automata: theory and applications. Proc. 3rd. Int. Conf. Cellular Automata, Los Alamos, 1991. Physica D 45 (1990).

    Google Scholar 

  13. H. Gutowitz: Mean Field vs. Wolfram Classification, preprint. CNLS, Los Alamos National Lab, NM 1988

    Google Scholar 

  14. H. Gutowitz: A hierarchical classification of cellular automata. In: [Gutl] pp. 136–158

    Google Scholar 

  15. L. Hurd: Formal language characterizations of cellular automaton limit sets. Complex Systems 1:1 (1987) 69–80

    MathSciNet  MATH  Google Scholar 

  16. L. Hurd: The application of formal language theory to the dynamical behavior of cellular automata. Dissertation, Princeton University, 1988

    Google Scholar 

  17. L. Hurd: The nonwandering set of a CA map. Complex Systems 2:5 (1988) 549–554

    MathSciNet  MATH  Google Scholar 

  18. L. Hurd, J. Kari, K. Culik: The topological entropy is uncomputable. Ergodic Theory and Dyn. Syst. 12:2 (1992) 255–265

    MathSciNet  MATH  Google Scholar 

  19. M. Hurley: Attractors in cellular automata. Ergodic Theo, and Dynam. Syst. 10 (1990) 131–140

    MathSciNet  MATH  Google Scholar 

  20. S. Ishii: Measure-theoretic approach to the classification of cellular automata. Disc. Appl. Math 39 (1992) 125–136

    MATH  Google Scholar 

  21. J. Kari, The nilpotency problem of one-dimensional cellular automata. SI AMJ. Comput. 21 (1992) 571–586

    MathSciNet  MATH  Google Scholar 

  22. J. Kari, Rice’s Theorem for the limit sets of cellular automata. Theoret. Comput. Sci. 127:2 (1994) 229–254

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Kürka: A comparison of finite and cellular automata. In: Math. Foundations of Computer Science MFCS, I. Privara, B. Rovan, eds. Lecture Notes in Computer Science 841, Springer-Verlag, Berlin, 1994, pp. 484–493

    Google Scholar 

  24. P. Kürka: Languages, equicontinuity and attractors in linear cellular automata. Preprint, Charles University, Praha, Czech Republic, 1994.

    Google Scholar 

  25. M. Langton: Artificial life. MIT Press, Cambridge MA, 1989.

    Google Scholar 

  26. W. Li, N. Packard: The structure of elementary cellular automata rule space. Complex Systems 4 (1990) 281–297

    MathSciNet  Google Scholar 

  27. M. Li, P. Vitänyi: An introduction to Kolmogorov complexity and its applications. Springer-Verlag, New York, 1993

    MATH  Google Scholar 

  28. W. Li, N. Packard, C. Langton: Transition phenomena in cellular automata rule space. In: [Gutl], pp. 77–94

    Google Scholar 

  29. D. Lind, B. Marcus: An introduction to symbolic dynamics. Manuscript, 1993

    Google Scholar 

  30. J. Milnor: Directional entropies of cellular automaton maps. In: Disordered systems and biological organization, Ev. Bienenstock et al., eds. Springer- Verlag, New York, 1986, pp. 113–115

    Chapter  Google Scholar 

  31. J. Milnor: On the entropy geometry of cellular automata. Complex Systems 2:3 (1988) 357–386

    MathSciNet  MATH  Google Scholar 

  32. S. Muroga, I. Toda, S. Takasu: Theory of majority decision elements, J. Franklin Inst. 271 (1961) 376–418

    Article  MathSciNet  MATH  Google Scholar 

  33. I. Parberry, G. Schnitger: Parallel computation with threshold functions. J. Comput. Syst. Sci. 36 (1988) 278–302

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Svozil: Constructive chaos by cellular automata and possible sources of an arrow of time. In: Proc. 3rd Int. Conf. in Cellular Automata, 1989. Physica D 45 (1990) 420–427

    Google Scholar 

  35. K. Sutner: A note on Culik-Yu classes. Ccpmplex Systems 3 (1989) 107–115

    MathSciNet  MATH  Google Scholar 

  36. S. Wolfram: Twenty problems in the theory of cellular automata. Physica Scripta T9 (1985) 170–183

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Wolfram: Statistical mechanics of cellular automata. Rev. of Modern Phys. 55:3 (1983) 601–644

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Wolfram: Random sequence generation by cellular automata. Adv. in Applied Math. 7 (1986) 123–169. Reprinted in [Wo4]

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Wolfram: Theory and Applications of cellular automata. World Scientific Publishing, Singapore, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garzon, M. (1995). Classification. In: Models of Massive Parallelism. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77905-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77905-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77907-7

  • Online ISBN: 978-3-642-77905-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics