Skip to main content

Linear Cellular Automata

  • Chapter
Models of Massive Parallelism

Part of the book series: Texts in Theoretical Computer Science. An EATCS Series ((TTCS))

Abstract

In the theory of classical systems, linear concepts play a fundamental role for at least two reasons: (a) they are usually about the only ones that admit a satisfactory mathematical analysis; and (b) nonlinear systems can usually be studied through linear approximations. At least part (a) has been true in the study of cellular automata. Emerging evidence suggests that (b) may bear some truth as well. In this chapter we introduce linear cellular automata and study their basic properties. We assume, as usual, that the nodes in the center cell‘s neighborhood N have been numbered in a fixed (but arbitrary) order x 1x 2x n and that N . denotes N expanded to include the center cell.

Article Note

Of two valid explanations, the simpler one will prevail. A version of Occam‘s razor

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers, as cited in [V].

    Google Scholar 

  2. S. Amoroso, G. Cooper: Tesselation structures for reproduction of arbitrary patterns. J. Comput. Syst. Science 5 (1971) 455–464

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Aso, N. Honda: Dynamical Characteristics of linear cellular automaton. J. Comput. Syst. Science 30 (1985) 291–317

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bagnoli: Boolean derivatives and computation of cellular automata. Int. J. Mod. Physics C 3 (1992) 307

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bagnoli, R. Rechtman, S. Ruffo: Damage spreading and Lyapunov exponents in cellular automata. Phys. Lett. A 186 (1993)

    Google Scholar 

  6. F. Bagnoli, R. Rechtman, S. Ruffo: Maximal Lyapunov exponent for ID boolean circuit automata. In: Cellular automata and cooperative systems. N. Boccara, E. Goles, S. Martinez, P. Picco (eds.). Kluwer, Dordrecht 1993, pp 19–28

    Google Scholar 

  7. R. Bartlett, M. Garzon: Distribution of linear rules in cellular automata rule space. Complex Systems 6:1 (1992) 519–532

    MathSciNet  MATH  Google Scholar 

  8. A.G. Barto: A note on pattern reproduction in tesselation structures. J. Comput. Syst. Science 16 (1978) 445–455

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bramson, D. Griffeath: Flux and fixation in cyclic particle systems, preprint

    Google Scholar 

  10. E.F. Codd: Cellular Automata. Academic Press, New York, 1968

    MATH  Google Scholar 

  11. P. Cordovil, R. Dilao, A. Noronha da Costa: Periodic orbits for additive cellular automata. Discr. Comput. Geom. 1:3 (1986) 277–288

    Article  MathSciNet  Google Scholar 

  12. R. Gilman: Classes of linear automata. Ergodic Th. and Dynam. Syst. 7 (1987) 108–118

    MathSciNet  Google Scholar 

  13. P. Guan, Y. He: Exact results for deterministic cellular automata with additive rules. J. Statistical Physics 43:3/4 (1978) 445–455

    MathSciNet  Google Scholar 

  14. W. Hurewicz and H. Wallman: Dimension theory. Princeton University Press, Princeton, 1948

    MATH  Google Scholar 

  15. M. Ito, N. Osato and M. Nasu: Linear cellular automata over Z m J. Comput. Syst. Science 27 (1983) 291–317

    Article  MathSciNet  Google Scholar 

  16. E. Jen: Cylindric cellular automata. Comm. Math. Physics 118 1988) 569–590

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Jen: Linear cellular automata and recurrence systems in finite fields. Comm. Math. Physics 119 (1988) 13–28

    Article  MathSciNet  Google Scholar 

  18. E. Jen: Exact solvability and quasi-periodicity of one-dimensional cellular automata. Nonlinearity 4 (1991) 251–276

    Article  MathSciNet  MATH  Google Scholar 

  19. C.G. Langton: Self reproduction in cellular automata. In: Proc. Los Alamos workshop on Cellular Automata. North-Holland, Amsterdam, 1983

    Google Scholar 

  20. W. Li, N. Packard: The structure of the elementary cellular automata rule space. Complex Systems 4:3 (1990) 281–297

    MathSciNet  Google Scholar 

  21. B. Littow, Ph. Dumas: Additive cellular automata and algebraic series. Theoret. comput. science 119:2 (1993) 345–354

    Article  Google Scholar 

  22. B. Martin, Self-similar fractals can be generated by cellular automata. In: Cellular automata and cooperative systems. N. Boccara, E. Goles, S. Martinez, P. Picco (eds.). Kluwer, Dordrecht 1993, pp 463–471

    Google Scholar 

  23. O. Martin, A. M. Odlyzko, S. Wolfram: Algebraic properties of cellular automata. Comm. Math. Phys. 93 (1984) 219–258

    Article  MathSciNet  MATH  Google Scholar 

  24. E.D. Muller, unpublished classnotes, University of Illinois, Urbana.

    Google Scholar 

  25. N. Reimen, Superposable trellis automata. Dissertation, LITP, Université de Paris VI, 1993. In: I.M. Havel, V. Koubek (eds.), Lecture Notes in Computer Science, Vol. 629. Springer-Verlag, 1992, pp. 472–482

    Google Scholar 

  26. F. Robert: Discrete iterations: a metric study. Springer-Verlag, Berlin, 1986

    Book  MATH  Google Scholar 

  27. A.D. Robison, Fast Computation of additive cellular automata. Complex Systems 1:1 (1987) 211–216

    MathSciNet  MATH  Google Scholar 

  28. T. Sato, Decidability of some problems of linear cellular automata over finite commutative rings. Inform. Process. Lett. 46 (1993) 151–155

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Sato, Group structural linear cellular automata. J. Comput. Syst. Sci. 49:1 (1994) 18–23

    Article  MATH  Google Scholar 

  30. K. Sutner: Linear celular automata and the garden of Eden. Math Intelligencer 11:2 (1989) 49–53

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Sutner: a—automata on Graphs. Complex Systems 2:1 (1988) 1–28

    MathSciNet  MATH  Google Scholar 

  32. S. Takahashi: Fractal sets in linear cellular automata. In: Proc. 3rd Int. Conference on Cellular Automata, CNLS Los Alamos, Physica D 45 (1990) 36–48

    Google Scholar 

  33. S. Takahashi: Self-similarity of linear cellular automata. J. Comput. Syst. Science 44:1 (1992) 114–140

    Article  MATH  Google Scholar 

  34. A. Thayse: Boolean calculus of differences. Springer-Verlag, Berlin, 1981

    MATH  Google Scholar 

  35. G. Vichniac: Boolean derivatives on cellular automata. Physica D 45 (1990) 65–74

    Article  MathSciNet  Google Scholar 

  36. S.J. Willson: Cellular automata can generate fractals. Discr. Applied Math. 8 (1984) 91–99

    Article  MathSciNet  MATH  Google Scholar 

  37. S.J. Willson: Computing fractal dimension for additive cellular automata. Physica D 24 (1987) 190–206

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garzon, M. (1995). Linear Cellular Automata. In: Models of Massive Parallelism. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77905-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77905-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77907-7

  • Online ISBN: 978-3-642-77905-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics