Skip to main content

Magnetic Resonance Spectroscopy

  • Chapter
Perinatal Asphyxia

Abstract

In vivo magnetic resonance spectroscopy (MRS) is noninvasive and can obtain metabolic information concerning developmental changes, regulatory functions, and adaptive mechanisms of the human neonatal central nervous system by discerning relevant metabolites from intact cells. Many compounds exist in sufficiently high concentrations in the cytosol of brain cells to be detectable in vivo with modern instrumentation using 31P-, 1H-, or even 13C MRS. Various MRS methods are available which allow both the monitoring of physiological changes in neonatal brain, either during development (Cady et al. 1983, 1991; Younkin et al. 1984; Hamilton et al. 1986; Martin et al. 1988; Boesch et al. 1988, 1989; Azzopardi et al. 1989a; Van der Knaap et al. 1990) or following perinatal injury, by comparing relative metabolite concentrations (Hope et al. 1984; Hamilton et al. 1986; Azzopardi et al. 1989b; Laptook et al. 1989). Some of these techniques have enabled the study of specific areas of the brain under equilibrium conditions (van der Knaap et al. 1990; Moorcraft et al. 1991a) and more recently the estimation of absolute concentrations (Cady and Azzopardi 1989; Cady 1990, 1991), or measuring enzymatic reaction rates, e.g., of the creatine kinase (CK) reaction (Shoubridge et al. 1982; Rudin and Sauter 1989; Mora et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman JJH, Grove TH, Wong GG, Gadian DG, Radda GK (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 283:167–170

    Article  PubMed  CAS  Google Scholar 

  • Agrawal HC, Himwich WA (1970) Amino acids, proteins and monoamines of developing brain. In: Himwich WA (ed) Developmental neurobiology. Thomas, Springfield, pp 298–299

    Google Scholar 

  • Aue WP, Mueller S, Cross TA, Seelig J (1984) Volume-selective excitation. A novel approach to topical NMR. J Magn Reson 56:350–354

    CAS  Google Scholar 

  • Azzopardi D, Wyatt JS, Hamilton PA, Cady EB, Delpy DT, Hope PL, Reynolds EOR (1989a) Phosphorus metabolites and intracellular pH in the brains of normal and small for gestational age infants investigated by magnetic resonance spectroscopy. Pediatr Res 25: 440–444

    Article  PubMed  CAS  Google Scholar 

  • Azzopardi D, Wyatt JS, Cady EB, Delpy DT, Baudin J, Stewart AL, Hope PL, Hamilton PA, Reynolds EOR (1989b) Prognosis of newborn infants with hypoxic—ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res 25:445–451

    Article  PubMed  CAS  Google Scholar 

  • Bates TE, Williams SR, Gadian DG (1989) Phosphodiesters in the liver: the effect of field strength on the 31P signal. Magn Reson Med 12:145–150

    Article  PubMed  CAS  Google Scholar 

  • Boesch C, Martin E (1988) Combined application of magnetic resonance imaging and spectroscopy in neonates and infants: installation and operation of a 2.35 Tesla system in a clinical setting. Radiology 168:481–488

    PubMed  CAS  Google Scholar 

  • Boesch C, Luescher K, Brunner P, Kaelin P, Zuerrer M, Dangel P, Martin E (1988) Incubator and monitoring and anesthesia equipment for MR examination of premature and intensive care patients at 2.35 T. Radiology 169P:384

    Google Scholar 

  • Boesch C, Gruetter R, Martin E, Due G, Wiithrich K (1989) Variations in the in vivo P-31 MR spectra of the developing human brain during postnatal life. Radiology 172:197–199

    PubMed  CAS  Google Scholar 

  • Boesch C, Fusch C, Gruetter R, Martin E (1991) Magnetic-resonance examinations of neonates and infants in small-bore systems. In: Lafeber HN (ed) Fetal and neonatal physiological measurements. Excerpta Medica, Amsterdam, pp 25–31

    Google Scholar 

  • Bottomley PA (1984) Selective-volume method for performing localized NMR spectroscopy. US patent 4 480 228

    Google Scholar 

  • Bottomley PA, Foster TH, Darrow RD (1984) Depth-resolved surface-coil spectroscopy (DRESS) for in vivo 1H, 31P, and 31C NMR. J Magn Reson 59:338–342

    CAS  Google Scholar 

  • Brenton DP, Garrod PJ, Krywawych S, Reynolds EOR, Bachelard HS, Cox DW, Morris PG (1985) Phosphoethanolamine is major constituent of phosphomonoester peak detected by 31P NMR in newborn brain. Lancet 1:115

    Article  PubMed  CAS  Google Scholar 

  • Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79:3523–3526

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Burn R, Lazeyras F, Aue WP, Straehl P, Bigler P, Althaus U, Herschkowitz N (1988) Correlation between 31P NMR phosphomonoester and biochemically determined phosphorylethanolamine and phosphatidylethanolamine during development of the rat brain. Dev Neurosci 10:213–221

    Article  Google Scholar 

  • Cady EB (1990) Absolute quantitation of phosphorus metabolites in the cerebral cortex of the newborn human infant and in the forearm muscles of young adults using a double-tuned surface coil. J Magn Reson 87:433–446

    CAS  Google Scholar 

  • Cady EB (1991) A reappraisal of the absolute concentrations of phosphorylated metabolites in the human neonatal cerebral cortex obtained by fitting Lorentzian curves to the 31P NMR spectrum. J Magn Reson 91:637–643

    CAS  Google Scholar 

  • Cady EB (1992) Determination of absolute concentrations of metabolites from NMR spectra. In: Rudin M, Seelig J (eds) In vivo magnetic resonance spectroscopy. Springer, Berlin Heidelberg New York, pp 249–281

    Google Scholar 

  • Cady EB, Azzopardi D (1989) Absolute quantitation of neonatal brain spectra acquired with surface coil localization. NMR Biomed 2:305–311

    Article  PubMed  CAS  Google Scholar 

  • Cady EB, Costello AM de L, Dawson MJ, Delpy DT, Hope PL, Reynolds EOR, Tofts PS, Wilkie DR (1983) Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 1:1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Cady EB, Roth S, Azzopardi D, Reynolds EOR (1990) Developmental changes in the absolute concentrations of phosphorylated metabolites in the cerebral cortex of the newborn human infant — Results from frequency domain spectrum analysis. Proc Society of Magnetic Resonance in Medicine, 9th Annual Meeting, New York, p 1003

    Google Scholar 

  • Cady EB, Hennig J, Martin E (1991) Magnetic resonance spectroscopy. In: Haddad J, Christmann D, Messer J (eds) Imaging techniques of the CNS of the neonates. Springer, Berlin Heidelberg New York, pp 117–146

    Chapter  Google Scholar 

  • Cerdan S, Subramanian VH, Hilberman M, Cone J, Egan J, Chance B, Williamson JR (1986) 31P NMR detection of mobile dog-brain phospholipids. Magn Reson Med 3:432–439

    Article  Google Scholar 

  • Chance B, Nakase Y, Bond M, Leigh JS, McDonald G (1978) Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proc Natl Acad Sci USA 75:4925–4929

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chapman AG, Westerberg E, Siesjo BK (1981) The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery. J Neurochem 36:179–189

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Ackerman JJH (1990) Spatially localized NMR spectroscopy employing an inhomogeneous surface-spoiling magnetic field gradient. NMR Biomed 3:147–165

    Article  PubMed  CAS  Google Scholar 

  • Cohen MM, Lin S (1962) Acid-soluble phosphates in the developing rabbit brain. J Neurochem 9:345–352

    Article  PubMed  CAS  Google Scholar 

  • Cohen JS (1988) Phospholipid and energy metabolism of cancer cells monitored by 31P magnetic resonance spectroscopy: possible clinical significance. Mayo Clin Proc 63: 1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Delivoria-Papadopolous M, Chance B (1988) 31P NMR spectroscopy in the newborn. In: Guthrie RD (ed) Recent advances in neonatal intensive care. Churchill Livingstone, Edinburgh, pp 153–179

    Google Scholar 

  • Frahm J, Merboldt KD, Hanicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72:502–508

    CAS  Google Scholar 

  • Glonek T, Kopp SJ, Kot E, Pettegrew JW, Harrison WH, Cohen MM (1982) P-31 nuclear magnetic resonance analysis of brain: the perchloric acid extract spectrum. J Neurochem 39:1210–1219

    Article  PubMed  CAS  Google Scholar 

  • Gordon RE, Hanley PE, Shaw D, Gadian DG, Radda GK, Styles P, Bore PJ, Chan L (1980) Localisation of metabolites in animals using 31P topical magnetic resonance. Nature 287:736–738

    Article  PubMed  CAS  Google Scholar 

  • Griffiths R (1954) The abilities of babies. University of London Press, London

    Google Scholar 

  • Gyngell ML, Michaelis T, Hörstermann D, Bruhn H, Hänicke W, Merboldt KD, Frahm J (1991) Cerebral glucose is detectable by localized proton NMR spectroscopy in normal rat brain in vivo. Magn Reson Med 19:489–495

    Article  PubMed  CAS  Google Scholar 

  • Gyulai L, Bolinger L, Leigh JS, Barlow C, Chance B (1984) Phosphorylethanolamine — the major constituent of the phosphomonoester peak observed by 31P — NMR on developing dog brain. FEBS Lett 178:137–142

    Article  PubMed  CAS  Google Scholar 

  • Hamilton PA, Hope PL, Cady EB, Delpy DT, Wyatt JS, Reynolds EOR (1986) Impaired energy metabolism in brains of newborn infants with increased cerebral echodensities. Lancet 1:1242–1246

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Boesch C, Gruetter R, Martin E (1987) Homogeneity spoil spectroscopy as a tool of spectrum localization for in vivo spectroscopy. J Magn Reson 75:179–183

    CAS  Google Scholar 

  • Hida K, Suzuki N, Kwee IL, Nakada T (1991) pH — lactate dissociation in neonatal anoxia: Proton and 31P NMR spectroscopic studies in rat pups. Magn Reson Med 22:128–132

    Article  PubMed  CAS  Google Scholar 

  • Hope PL, Costello AM de L, Cady EB, Delpy DT, Tofts PS, Chu A, Hamilton PA, Reynolds EOR (1984) Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet 2:366–370

    Article  PubMed  CAS  Google Scholar 

  • Hope PL, Costello AM de L, Cady EB, Delpy DT, Tofts PS, Chu A, Reynolds EOR (1986) Cerebral metabolism in newborn infants studied by phosphorus nuclear magnetic resonance spectroscopy. In: Rolfe P (ed) Neonatal physiological measurements. Butterworth, London, pp 382–389

    Chapter  Google Scholar 

  • Hope PL, Cady EB, Delpy DT, Ives NK, Gardiner RM, Reynolds EOR (1988) Brain metabolism and intracellular pH during ischaemia: effects of systemic glucose and bicarbonate administration studied by 31P and 1H nuclear magnetic resonance spectroscopy in vivo in the lamb. J Neurochem 50:1394–1402

    Article  PubMed  CAS  Google Scholar 

  • Hoult DI (1979) Rotating frame zeugmatography. J Magn Reson 33:183–197

    CAS  Google Scholar 

  • Hueppi PS, Posse S, Lazeyras F, Burri R, Bossi E, Herschkowitz N (1991) Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 30:574–578

    Article  CAS  Google Scholar 

  • Karlik SJ, Heatherley T, Pavan F, Stein J, Lebron F, Rutt B, Carey L, Wexler R, Gelb A (1988) Patient anesthesia and monitoring at a 1.5-T MRI installation. Magn Reson Med 7:210–221

    Article  PubMed  CAS  Google Scholar 

  • Kreis R (1991) Post-acquisition water suppression with digital low-frequency filters for 1H MRS in man. Proc Eur Soc Magn Reson Med Biol, 8th Annual Meeting, Zürich, p 205

    Google Scholar 

  • Laptook AR, Corbett RJ, Uauy R, Mize C, Mendelsohn D, Nunnally RL (1989) Use of 31P magnetic resonance spectroscopy to characterise evolving brain damage after perinatal asphyxia. Neurology 39:709–712

    Article  PubMed  CAS  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  • Lolley RN, Balfour WM, Samson FE (1961) The high-energy phosphates in developing brain. J Neurochem 7:289–297

    Article  CAS  Google Scholar 

  • Martin E, Boesch C, Grueter R, Kikinis R, Kewitz G, Boltshauser E, Werner B, Eich G (1988) Magnetresonanz in der pädiatrischen Forschung und Klinik. II. Untersuchungen zur Entwicklung und Pathologie des Gehirns bei Neugeborenen, Säuglingen und Kleinkindern Helv Paediatr Acta 43:75–86

    CAS  Google Scholar 

  • Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high-resolution spectroscopy by “four-dimensional” NMR. J Magn Reson 51:147–152

    CAS  Google Scholar 

  • McArdle CB, Nicholas DA, Richardson CJ, Amparo EG (1986) Monitoring of the neonate undergoing MR imaging: technical considerations. Radiology 159:223–226

    PubMed  CAS  Google Scholar 

  • McArdle CB, Richardson CJ, Nicholas DA, Mirfakhraee M, Hayden CK, Amparo EG (1987) Developmental features of the neonatal brain: MR imaging. Radiology 162:223–229

    PubMed  CAS  Google Scholar 

  • Miller AL, Shamban A (1977) A comparison of methods for stopping intermediary metabolism of developing rat brain. J Neurochem 28:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Miller BL (1991) A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 4:47–52

    Article  PubMed  CAS  Google Scholar 

  • Moorcraft J, Bolas NM, Ives NK, Ouwerkerk R, Smyth J, Rajagopalan B, Hope PL, Radda GK (1991a) Global and depth-resolved phosphorus magnetic resonance spectroscopy to predict outcome after birth asphyxia. Arch Dis Child 66:1119–1123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moorcraft J, Bolas NM, Ives NK, Sutton P, Blackledge MJ, Rajagopalan B, Hope PL, Radda GK (1991b) Spatially localized magnetic resonance spectroscopy of the brains of normal and asphyxiated newborns. Pediatrics 87:273–282

    PubMed  CAS  Google Scholar 

  • Mora B, Narasimhan PT, Ross BD, Allman J, Barker PB (1991) P-31 saturation transfer and phosphocreatine imaging in the monkey brain. Proc Natl Acad Sci USA 88:8372–8376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murphy EJ, Rajagopalan B, Brindle KM, Radda GK (1989) Phospholipid bilayer contribution to 31P NMR spectra in vivo. Magn Reson Med 12:282–289

    Article  PubMed  CAS  Google Scholar 

  • Nakada T, Houkin K, Hida K, Kwee IL (1991) Rebound alkalosis and persistent lactate: multinuclear (1H, 13C, 31P) NMR spectroscopic studies in rats. Magn Reson Med 18:9–14

    Article  PubMed  CAS  Google Scholar 

  • Nixon C, Hirsch NP, Ormerod IEC, Johnson G (1986) Nuclear magnetic resonance; its implication for the anesthetist. Anaesthesia 41:131–137

    Article  PubMed  CAS  Google Scholar 

  • Okumura N, Otsuki S, Kameyama A (1960) Studies on free amino acids in human brain. J Biochem 47:315–320

    Google Scholar 

  • Ordidge RJ, Connelly A, Lohman JAB (1986) Image-selected in vivo spectroscopy (ISIS): a new technique for spatially selective NMR spectroscopy. J Magn Reson 66:283–294

    CAS  Google Scholar 

  • Petroff OAC, Prichard JW, Behar KL, Alger JR, den Hollander JA, Shulman RG (1985) Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology (NY) 35:781–788

    Article  CAS  Google Scholar 

  • Pettegrew JW, Kopp SJ, Dadok J, Minshew NJ, Feliksik JM, Glonek T, Cohen MM (1986) Chemical characterization of a prominent phosphomonoester resonance from mammalian brain. 31P and 1H NMR analysis at 4.7 and 14.1 Tesla. J Magn Reson 67:443–450

    CAS  Google Scholar 

  • Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM (1987) 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: Preliminary observations. J Neuropathol Exp Neurol 46:419–430

    Article  PubMed  CAS  Google Scholar 

  • Ross BD (1991) Biochemical considerations in 1H spectroscopy. Glutamate and glutamine; myo-inositol and related metabolites. NMR Biomed 4:59–63

    Article  PubMed  CAS  Google Scholar 

  • Roth JL, Nugent M, Gray JE, Julsrud PR, Berquist TH, Sill JC, Kispert DB (1985) Patient monitoring during magnetic resonance imaging. Anesthesiology 62:80–83

    Article  PubMed  CAS  Google Scholar 

  • Roth SC, Azzopardi D, Edwards AD, Baudin J, Cady EB, Townsend J, Delpy DT, Stewart AL, Wyatt JS, Reynolds EOR (1992) Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol (in press)

    Google Scholar 

  • Rudin M, Sauter A (1989) Dihydropyridine calcium antagonists reduce the consumption of high-energy phosphates in the rat brain. A study using combined 31P/1H magnetic resonance spectroscopy and 31P saturation transfer. J Pharmacol Exp Ther 251:700–706

    PubMed  CAS  Google Scholar 

  • Shellock FG, Slimp G (1989) Severe burn of the finger caused by using a pulse oximeter during MR imaging. AJR 153:1105

    Article  PubMed  CAS  Google Scholar 

  • Shoubridge EA, Briggs RW, Radda GK (1982) 31P NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthesis in the rat brain. FEBS Lett 140:288–292

    Article  CAS  Google Scholar 

  • Thalayasingam S, Chu A, Delpy DT (1985) An infant incubator for use during NMR spectroscopy and imaging. Proc Soc Magn Reson Med, 4th Annual Meeting, London, pp 927–928

    Google Scholar 

  • Thulborn KR, Ackerman JJH (1983) Absolute molar concentrations by NMR in inhomogeneous B1 A scheme for analysis of in vivo metabolites. J Magn Reson 55:357–371

    CAS  Google Scholar 

  • Tofts PS, Cady EB, Delpy DT, Costello AM de L, Hope PL, Reynolds EOR, Wilkie DR, Gould SJ, Edwards D (1984) Surface coil NMR spectroscopy of brain. Lancet 1:459

    Article  PubMed  CAS  Google Scholar 

  • Van der Knaap MS, van der Grond J, van Rijen PC, Faber JAJ, Valk J, Willemse K (1990) Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 176:509–515

    PubMed  Google Scholar 

  • Vannucei RC, Duffy TE (1977) Cerebral metabolism in newborn dogs during reversible asphyxia. Ann Neurol 1:528–534

    Article  Google Scholar 

  • Veech RL, Harris RL, Veloso D, Veech EH (1973) Freeze-biowing: a new technique for the study of brain in vivo. J Neurochem 20:183–188

    Article  PubMed  CAS  Google Scholar 

  • Younkin DP, Delivoria-Papadopoulos M, Leonard JC, Subramanian VH, Eleff S, Leigh JS, Chance B (1984) Unique aspects of human newborn cerebral metabolism evaluated with phosphorus nuclear magnetic resonance spectroscopy. Ann Neurol 16:581–586

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cady, E.B., Boesch, C., Martin, E. (1993). Magnetic Resonance Spectroscopy. In: Haddad, J., Saliba, E. (eds) Perinatal Asphyxia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77896-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77896-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77898-8

  • Online ISBN: 978-3-642-77896-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics