Skip to main content

Biochemical Mechanisms of Hypoxic — Ischemic Brain Damage

  • Chapter
Perinatal Asphyxia
  • 88 Accesses

Abstract

Cerebral hypoxia-ischemia remains a major cause of acute perinatal brain injury, leading to severe neurodevelopmental impairments. The incidence of hypoxic—ischemic encephalopathy at birth in full-term infants has been reported to be between two and four per 1000 deliveries in developed countries [3]. Up to 60% of small preterm neonates may suffer brain injury following perinatal asphyxia. In order to understand the therapeutic measures aimed at protecting the brain from hypoxia-ischemia, it is necessary to know the processes involved. In this chapter we will focus on those neurochemical aspects which occur during hypoxia-ischemia and recirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium-dependent. Neurosci Lett 58:293–297

    Article  PubMed  CAS  Google Scholar 

  2. Diessel GA (1984) Regional accumulation of calcium in postischemic rat brain. J Neuro chem 43:913–925

    Google Scholar 

  3. Ergander U, Eriksson M, Zetterström R (1983) Severe neonatal asphyxia. Acta Paediatr Scand 72:321–325

    Article  PubMed  CAS  Google Scholar 

  4. Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res Rev 7:103

    Article  CAS  Google Scholar 

  5. Friedman WF, Kirkpatrick SE (1977) Fetal cardiovascular adaptation to asphyxia. In: Gluck L (ed) Intrauterine asphyxia and the developing fetal brain. Year Book Medical Publishes, Chicago, p 149

    Google Scholar 

  6. Ginsberg MD, Frank AW, Budd WW (1980) Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. Stroke 11:347–354

    Article  PubMed  CAS  Google Scholar 

  7. Halliwell B, Gutteridge JMC (1985) The importance of free radicals and catalytic metal ion in human diseases. Mol Aspects Med 8:89–193

    Article  PubMed  CAS  Google Scholar 

  8. Hillered L, Ernster L, Siesjö BK (1984) Influence of in vitro lactic acidosis and hypercapnia on respiratory activity of isolated brain mitochondria. J Cereb Blood Flow Metab 4: 430–437

    Article  PubMed  CAS  Google Scholar 

  9. Holowach-Thurston J, McDougal DB Jr (1969) Effect of ischemia on metabolism of the brain of the newborn mouse. Am J Physiol 216:348

    Google Scholar 

  10. Kalimo H, Rehncrona S, Söderfeit B, Olsson Y, Siesjö BK (1981) Brain lactic acidosis and ischemic cell damage. II. Histopathology. J Cereb Blood Flow Metab 1:313–327

    Article  PubMed  CAS  Google Scholar 

  11. Kennedy MB (1989) Regulation of neuronal function by calcium. Trends Neurosci 12:417–424

    Article  PubMed  CAS  Google Scholar 

  12. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  13. Kochlar A, Zivin JA, Lyden PD, Mazzarella V (1988) Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia. Arch Neurol 45:148–153

    Google Scholar 

  14. Lucus DR, Newhouse JP (1957) The toxic effect of sodium-L-glutamate on the inner layers of retina. AMA Arch Ophtalmol 58:193–201

    Google Scholar 

  15. Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 18:197

    Article  Google Scholar 

  16. McDonald JW, Silverstein FS, Johnston MV (1987) MK-801 protects the neonatal brain from hypoxic—ischemic damage. Eur J Pharmacol 140:359–361

    Article  PubMed  CAS  Google Scholar 

  17. Meldrum B (1985) Excitatory amino acids and anoxic-ischemic brain damage. Trends Neurosci 8:47–48

    Article  CAS  Google Scholar 

  18. Myers RE (1979) A unitary theory of causation of anoxic and hypoxic brain pathology. Adv Neurol 26:195–213

    PubMed  CAS  Google Scholar 

  19. Myers RE, Yamaguchi S (1977) Nervous system effects of cardiac arrest in monkeys. Arch Neurol 24:65–74

    Google Scholar 

  20. Nordstrom CH, Rehncrona S, Siesjo BK (1976) Restitution of cerebral energy state after complete and incomplete ischemia of 30-minute duration. Acta Physiol Scand 97:270–272

    Article  CAS  Google Scholar 

  21. Pulsinelli WA (1985) De-afferentation of the hippocampus protects CA1 pyramidal neurons against ischemic injury. Stroke 16:144

    Google Scholar 

  22. Pulsinelli WA, Waldman S, Rawlinson D, Plum F (1982) Moderate hyperglycemia augments ischemic brain damage: A neuropathological study in the rat. Neurology (NY) 32:1239–1246

    CAS  Google Scholar 

  23. Pulsinelli WA, Levy DE, Sigsbee B, Sherer P, Plum F (1983) Increased damage after ischemic stroke in patients with hyperglycemia with or without diabetes mellitus. Am J Med 74:540–544

    Article  PubMed  CAS  Google Scholar 

  24. Rothman SM (1992) Biochemistry of hypoxic—ischemic brain injury. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. Saunders, Philadelphia, pp 1608–1613

    Google Scholar 

  25. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic—ischemic brain damage. Ann Neurol 19:105–111

    Article  PubMed  CAS  Google Scholar 

  26. Siemkowicz E, Hansen AJ (1978) Clinical restitution following cerebral ischemia in hypo-, normo-, and hyperglycemic rats. Acta Neurol Scand 58:1–8

    Article  PubMed  CAS  Google Scholar 

  27. Siesjo BK (1988) Mechanisms of ischemic brain damage. Crit Care Med 16:954–963

    Article  PubMed  CAS  Google Scholar 

  28. Siesjo BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 9:127–140

    Article  PubMed  CAS  Google Scholar 

  29. Stein DT, Vannucci RC (1988) Calcium accumulation during the evolution of hypoxic- ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 8:834–842

    Article  PubMed  CAS  Google Scholar 

  30. Thiringer K, Blomstrand S, Hrbek A, Karlsson K, Kjellmer I (1982) Cerebral arteriovenous differences for hypoxanthine and lactate during graded asphyxia in the fetal lamb. Brain Res 239:107–111

    Article  PubMed  CAS  Google Scholar 

  31. Vannuci RC, Vasta F, Vannuci SJ (1987) Cerebral metabolic responses of hyperglycemic immature rats to hypoxia-ischemia. Pediatr Res 21:524–529

    Article  Google Scholar 

  32. Vannuci RC, Christensen MA, Stein DT (1989) Regional cerebral glucose utilization in the immature rat: effect of hypoxia-ischemia. Pediatr Res 26:208–214

    Article  Google Scholar 

  33. Van Reempts J, Borgers M (1985) Ischemic brain injury and cell calcium: morphologic and therapeutic aspects. Ann Emerg Med 14:736–742

    Article  PubMed  Google Scholar 

  34. Voorhies JM, Rawlinson D, Vannuci RC (1986) Glucose and perinatal hypoxic—ischemic brain damage in the rat. Neurology 36:1115–1118

    PubMed  CAS  Google Scholar 

  35. Wei EP, Kontos HA, Dietrich WD (1981) Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Circ Res 48:95–103

    PubMed  CAS  Google Scholar 

  36. Welsh FA, Vannuci R, Brierly JB (1982) Columnar alterations of NADH fluorescence during hypoxia-ischemia in immature rat brain. J Cereb Blood Flow Metab 2:221–228

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saliba, E., Laugier, J. (1993). Biochemical Mechanisms of Hypoxic — Ischemic Brain Damage. In: Haddad, J., Saliba, E. (eds) Perinatal Asphyxia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77896-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77896-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77898-8

  • Online ISBN: 978-3-642-77896-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics