The Measurement of Absolute Lumen Cross Sectional Area and Lumen Geometry in Quantitative Angiography

  • D. J. Hawkes
  • A. C. F. Colchester
  • M. A. de Belder
  • R. N. Norbury
  • A. J. Camm
  • M. J. Davies
Part of the NATO ASI Series book series (volume 98)

Abstract

This paper describes our calibration technique to derive the absolute cross-sectional area of diseased blood vessel lumen from X-ray angiograms. This technique relies on the identification of a blood vessel of circular cross-section near to the diseased segment. If we assume that the concentration of contrast material and the densitometric response of the imaging system are constant over the diseased segment we may apply the calibration factor derived from adjacent circular segments to the diseased segment. Our interactive computer program, which incorporates this procedure, has been validated for segments of diseased coronary artery obtained at post mortem. Comparison with photographs of cross-sections of the arteries yielded a standard error of the estimate of 0.47mm2 using cine fluorography with samples every 0.3mm along the artery’s axis and film-screen radiography with samples every 0.1mm. The X-ray and geometric projections of the arterial cross-sections were consistent within the expected accuracy of the experiment. For the film-screen the precision of the densitometric profiles was approximately 0.1mm with systematic calibration errors of upto 0.2mm. There is considerable information in the X-ray projection data which could be used for the analysis of lumen shape, and hence the classification of vascular pathology.

Keywords

Attenuation Iodine Barium Cardiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alison, H.W., Russell, R.O. Jr, Mantle, J.A., Kouchoukas, N.T. Moraski, R.E. and Rackley, C.E. (1978). Coronary anatomy and arteriography in patients with unstable angina pectoris, Am. J. Cardiol. 41, pp. 204–209.PubMedCrossRefGoogle Scholar
  2. Ambrose, J.A., Winters, S.L, Arora, R.R., Eng, A., Riccio, A., Gorlin, R. and Fuster, V. (1986). Angiographic evolution of coronary artery morphology in unstable angina, JACC. 7, pp. 472–478.PubMedGoogle Scholar
  3. Brown, B.G. (1978). Coronary vasospasm. Observations linking the clinical spectrum of ischaemic heart disease to the dynamic pathology of coronary atherosclerosis. Arch. Intern. Med. 141, pp.716–722.CrossRefGoogle Scholar
  4. Brown, B.G., Bolson, E.L., and Dodge, H.T. (1986). Quantitative computer techniques for analysing coronary arteriograms. Prog. Cardiovasc. Dis. 6, pp. 403–418.CrossRefGoogle Scholar
  5. Colchester, A.C.F (1985). The effect of changing PaCO2 on Cerebral artery calibre estimated by a new technique of dynamic quantitative digital angiography. Ph.D. Thesis, University of London.Google Scholar
  6. Davies, M.J. (1987). Pathology of ischaemic heart disease. In: Current status of clinical cardiology. Ischaemic Heart Disease, Fox, K.M (ed.), MTP Press Ltd., pp.33-68.Google Scholar
  7. De Rouen, T.A., Murray, J.A., and Owen W. (1977). Variability in the analysis of coronary arteriograms. Circulation 55, pp. 324–328.Google Scholar
  8. Detre, K.M, Wright, E., Murphy, M.L., and Takaro, T. (1975). Observer agreement in evaluating coronary angiograms. Circulation 52, pp.979–983.PubMedGoogle Scholar
  9. Fuster, V., Frye, R.L., Connolly, D.C., Davidson, M.A, Elveback, L.R., and Kurland, C.T. (1975). Arteriographic pattern early in the onset of the coronary symptoms. Br. Heart Journal 37, pp.1250–1255.CrossRefGoogle Scholar
  10. Harrison, D.G., White, C.W., Hiratzka, L.F., Doty, D.B., Barnes, D.H., Eastham, C.L. ad Marcus, M.L. (1984). The value of lesion cross-sectional area determined by quantitative coronary arteriography in assessing the physiological significance of proximal left anterior descending coronary arterial stenosis. Circulation 69, pp. 1111–1119.PubMedCrossRefGoogle Scholar
  11. Hawkes, D.J., Mol, C.B., and Colchester, A.C.F. (1987). The accurate 3D reconstruction of the geometric configuration of vascular trees from X-ray recordings. In: Physics and engineering of medical imaging. NATO ASI. Guzzardi (ed.), Martinus Nijhoff, Holland, pp. 250–256.Google Scholar
  12. Levin, D.C., and Fallon, J.T. (1982). Significance of the angiographie morphology of localised coronary artery stenosis: histopathological correlations. Circulation 66, pp. 316–320.PubMedCrossRefGoogle Scholar
  13. Reiber, J.H.C., Gerbrands, J.J., and Troost, G.J. (1983). Transfer functions of the X-ray-cine-video chain applied to digital processing of coronary cine-angiograms. In: Digital imaging in cardiovascular radiology. Heintzen and Brennecke (eds.), Georg Thieme Verlag, Berlin, pp. 89–103.Google Scholar
  14. Singh, R.N. (1984). Progression of coronary atherosclerosis. Clues to pathogenesis from serial coronary arteriography. Br. Heart J. 52, pp. 451–461.PubMedCrossRefGoogle Scholar
  15. Thomas, A.C., and Davies, M.J. (1985a). The demonstration of cardiac pathology using perfusion fixation. Histopathology 9, pp. 5–19.PubMedCrossRefGoogle Scholar
  16. Thomas, A.C., and Davies, M.J. (1985b). Post mortem investigation and quantification of coronary artery disease. Histopathology 9, pp. 959–976.PubMedCrossRefGoogle Scholar
  17. Zir, L.M., Miller, S.W., and Dinsmore, Gilbert, J.P. and Hartbourne, J.W. (1979). Interobserver variability in coronary angiography. Circulation 53, pp.627–632.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. J. Hawkes
    • 1
  • A. C. F. Colchester
    • 1
  • M. A. de Belder
    • 2
  • R. N. Norbury
    • 2
  • A. J. Camm
    • 2
  • M. J. Davies
    • 2
  1. 1.Guy’s HospitalUMDSUK
  2. 2.St. George’s Hospital Medical SchoolUK

Personalised recommendations