Skip to main content

The Role of the Connective Tissue Matrix in Wound Healing: Fibroblast and Collagen Interactions

  • Conference paper

Abstract

The damage and loss of skin initiates the repair process. In traumas in which there is only superficial loss of the epidermal surface, such as occurs in minor sunburn, the repair process is limited to regeneration of a new epidermal surface. The regeneration of the epidermis results from the migration and proliferation of epidermal cells residing in subepidermal appendages beneath the surface. The resurfacing of the injury site is rapid and complete with no structural changes occurring to the underlying dermis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie M; Flint MH, James DW (1954) Collagen formation and wound contraction during repair of small excised wounds in the skin of rats. J Embryol Exp Morphol 2:264–274.

    Google Scholar 

  • Bailey AJ, Bazin S, Sims TJ, LeLous M, Nicoletis C, DeLaunay A (1975a) Characterization of the collagen of human hypertrophic and normal scars. Biochem Acta 405:412–421.

    CAS  Google Scholar 

  • Bailey AJ, Sims TJ, LeLous M, Bazin A (1975b) Collagen polymorphism in experimental granulation tissue. Biochem Biophys Res Commun 66:1160–1165.

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Ivarsson B, Merrill C (1979) Production of a tissuelike structure by contraction of collagen lattice by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76:1274–1278.

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T (1981) Living tissues formed in vitro and accepted as full thickness skin equivalents. Science 211:1052–1054.

    Article  PubMed  CAS  Google Scholar 

  • Billingham RE, Russell PS (1956) Studies on wound healing, with special reference to the phenomenon of contracture in experimental wounds in rabbits’ skin. Ann Surg 144:961–981.

    Article  PubMed  CAS  Google Scholar 

  • Brody GS, Peng TJ, Landel RF (1981) The etiology of hypertrophic scar: another view. Plast Reconstr Surg 67:673–684.

    Article  PubMed  CAS  Google Scholar 

  • Burak LS, Yocum RR, Nothwagel EA, Webb WE (1980) Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole phallacidin. Proc Natl Acad Sci USA 77:980–984.

    Article  Google Scholar 

  • Dunphy JE, Udupa KN (1955) Chemical and histochemical sequences in normal healing wounds. N Engl J Med 253:847–851.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HP (1984) The role of connective tissue matrix in hypertrophie scar contracture. In: Hunt TK, Heppenstall RB, Pines E, Rovee D (eds) Soft and hard tissue repair: biological and chemical aspects. Praeger, New York, pp 533–553.

    Google Scholar 

  • Ehrlich HP (1988a) Wound closure: evidence of a cooperation between fibroblasts and collagen matrix. Eye 2:149–157.

    Article  PubMed  Google Scholar 

  • Ehrlich HP (1988b) The modulation of contraction of fibroblast populated collagen lattices by types I, II, and III collagen. Tissue Cell 20:47–50.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HP, Hembry RM (1984) A comparative study of fibroblasts in healing freeze and burn injuries in rats. Am J Pathol 117:218–224.

    PubMed  CAS  Google Scholar 

  • Ehrlich HP, Needle AL (1983) Wound healing in tight skin mice: delayed closure of excised wounds. Plast Reconstr Surg 72:190–196.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HP, Rajaratnam JBM (1986) ATP-induced cell contraction in dermal fibroblasts: effects of cAMP and myosin light chain kinase. J Cell Physiol 128:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HP, Rajaratnam JBM (1990) Cell locomotion versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue Cell 22:407–417.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HP, Rajaratnam JBM, Griswold TR (1986) ATP induced cell contraction in dermal fibroblasts: effects of cAMP and myosin light chain kinase. J Cell Physiol 128:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G (1972) Granulation tissue as a contractile organ: a study of structure and function. J Exp Med 135:719–734.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg BD, Burgeson RE (1982) Binding soluble type I collagen to fibroblasts: specificities for native collagen types, triple helical structure telopeptides and cyanogen bromide-derived peptides. J Cell Biol 95:752–756.

    Article  PubMed  CAS  Google Scholar 

  • Goldman RD, Schloss JA, Starger JM (1976) Organizational changes of actin like microfilaments during animal cell movement. In: Goldman RD, Pollard T, Rosenbaum J (eds) Cell mobility. Cold Spring Harbor Laboratory, New York, pp 217–245.

    Google Scholar 

  • Gross J, Kirk D (1958) The heat precipitation of collagen from neutral salt solutions: some rate-regulating factors. J Biol Chem 233:355–360.

    PubMed  CAS  Google Scholar 

  • Gullberg D, Terracio L, Borg TK, Rubin K (1989) Intergrin-like collagen receptors in primary cells: identification of intergrins in hepatocytes and fibroblasts with affinity for interstitial collagens. J Biol Chem 264:12686–12694.

    PubMed  CAS  Google Scholar 

  • Gullberg D, Tingstrom A, Thurrsson A-C, Olsson L, Terracio L, Borg TK, Rubin K (1990) B1 intergrin-mediated collagen gel contraction is stimulated by PDGF. Exp Cell Res 186:264–272.

    Article  PubMed  CAS  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrate: a new wrinkle in the study of cell locomotion. Science 280:177–179.

    Article  Google Scholar 

  • Helseth DL Jr, Veis A (1981) Collagen self-assembly in vitro. J Biol Chem 256:7118–7128.

    PubMed  CAS  Google Scholar 

  • Hembry RM, Bernanke DH, Hayakashi K, Trelstad RL, Ehrlich HP (1986) Morphologic examination of mesenchymal cells in healing wounds of normal and tight skin mice. Am J Pathol 125:81–89.

    PubMed  CAS  Google Scholar 

  • Hirschel BJ, Gabbiani G, Ryan GB, Majno G (1971) Fibroblasts of granulation tissue: immunofluorescent staining with anti-smooth muscle serum. Proc Soc Exp Biol Med 138:466–469.

    PubMed  CAS  Google Scholar 

  • Majno G, Gabbiani G, Hirschel BJ, Ryan GB (1971) Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173:548–550.

    Article  PubMed  CAS  Google Scholar 

  • Trollier J, Dumas H, Tardy M, Talyot J-L (1990) Fibroblast behavior on gels of type I, III and IV human placental collagens. Exp Cell Res 191:96–104.

    Google Scholar 

  • Weiland T, Faulstich H (1978) Amatoxins, phallotoxine, phallolysin and atamanide: the biologically active components of poisonous Amanita mushrooms. CRC Crit Rev Biochem 5:185–260.

    Article  Google Scholar 

  • Woodley DJ, Yamauchi M, Wynn KC, Mechanic G, Briggaman RA (1991) Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction. J Invest Dermatol 97:580–585.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ehrlich, H.P. (1995). The Role of the Connective Tissue Matrix in Wound Healing: Fibroblast and Collagen Interactions. In: Altmeyer, P., Hoffmann, K., el Gammal, S., Hutchinson, J. (eds) Wound Healing and Skin Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77882-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77882-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56124-8

  • Online ISBN: 978-3-642-77882-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics