Advertisement

Noninvasive Measurement of Wound Healing of the Skin

  • K. Hoffmann
  • M. Stücker
  • T. Dirschka
  • T. Krömer
  • S. el Gammal
  • A. Hoffmann
  • P. Altmeyer

Abstract

Clinical research has tried to speed up wound healing for more than a century. In order to develop appropriate medication for this purpose, we need to have an exact understanding of the physiology of wound healing. The development of wound healing models and the capacity to evaluate wound healing in an objective way are additional, important prerequisites. So far, there has been a lack of highly standardized or generally recognized wound healing models developed in human beings which meet strict scientific and ethical requirements. Investigations referring to wound healing models therefore have largely been restricted to animal experiments or to observations of the healing process on the surfaces of wounds.

Keywords

Wound Healing Laser Doppler Flowmetry Peripheral Occlusive Arterial Disease Noninvasive Measurement Functional Capillary Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmeyer P, Luther H (1989) Die dermatologische Kryochirurgie. Akt Dermatol 15:303–311.Google Scholar
  2. Bollinger A, Fagrell B (1990) Clinical capillaroscopy. Hogrefe and Huber, Toronto, pp 9–30.Google Scholar
  3. Bollinger F, Butti P, Barras JP, Trachsler H, Siegenthaler W (1974) Red blood cell velocity in nailfold capillaries of man measured by a television microscopy technique. Microvasc Res 7:61–72.PubMedCrossRefGoogle Scholar
  4. Breuckmann B, Klaas E, Maidhof A (1991) Online-Topometrie: Innovative optische Meß-und Prüftechnik. Laser Magazin 2:5–8.Google Scholar
  5. Brink JA, Sheets PW, Dines KA, Etchison MR, Hanke CW, Sadove AM (1986) Quantitative assessment of burn injury in porcine skin with high frequency ultrasonic imaging. J Invest Radiol 8:645–651.CrossRefGoogle Scholar
  6. Fagrell B (1972) Vital capillaroscopy — a clinical method for studying changes of skin microcirculation in patients suffering from vascular discorders of the leg. Angiology 23:284–298.CrossRefGoogle Scholar
  7. Fagrell B (1977) The skin microcirculation and the pathogenesis of ischemic necrosis and gangrene. Scan J Clin Lab Invest 37:473–476.CrossRefGoogle Scholar
  8. Fagrell B, Intaglietta M, Tsai AG, Östergren J (1986) Der kombinierte Einsatz von Strömungsmessungen mit dem Laser-Doppler-Verfahren und der Dynamischen Kapillarmikroskopie zur Bestimmung des funktionellen Verhaltens der kutanen Mikrozirkulation. In: Mahlert F, Meßmer K, Hammersen F (eds) Methoden der klinischen Kapillarmikroskopie. Karger, Basel, pp 44–55.Google Scholar
  9. Gaethgens PA (1981) Bedeutung der Mikrozirkulation für die arterielle Verschlußkrankheit. In: Messmer K, Hammersen F (eds) Mikrozirkulation und arterielle Verschlußkrankheit. Karger, Basel, pp 3–9.Google Scholar
  10. Hiller D, Hornstein OP (1990) Moderne Methoden zur nicht-invasiven Untersuchung der Mikrozirkulation der Haut. Zbl Haut 158:2–25.Google Scholar
  11. Hoffmann K, Stücker M, el Gammal S, Altmeyer P (1989) Digital 20 MHz ultrasound of the skin as a tool in preoperative diagnostic investigation. H+G Z Hautkr 64/10:851–858.Google Scholar
  12. Hoffmann K, Stücker M, el Gammal S, Altmeyer P (1990a) Digitale 20 MHz-Sonographie des Basalioms. Hautarzt 41:333–339.PubMedGoogle Scholar
  13. Hoffmann K, el Gammal S, Altmeyer P (1990b) B-scan Sonographie in der Dermatologie. Hautarzt 41:W7–W15.PubMedGoogle Scholar
  14. Hoffmann K, Winkler K, el Gammal S, Altmeyer P (1993a) A wound healing model with sonographic monitoring. Clin Exp Dermatol 18:217–225.PubMedCrossRefGoogle Scholar
  15. Hoffmann K, Dirschka T, Stücker M, Rippert G, Hoffmann A, el Gammal S, Altmeyer P (1993b) Ultrasound and cryosurgery. Dermatol Monatsschr 179:270–277.Google Scholar
  16. Holloway GA, Watkins DW (1977) Laser Doppler measurements of cutaneous blood flow. J Invest Dermatol 69:306–309.PubMedCrossRefGoogle Scholar
  17. Huch A, Franzeck UK, Huch R, Bollinger A (1983) A transparent transcutaneous oxygen electrode for simultaneous studies of skin capillary morphology, flow dynamics and oxygenation. Int J Microcirc Clin Exp 2:103–108.PubMedGoogle Scholar
  18. Jakobsson A (1992) Sampling depth in laser Doppler flowmetry. Thesis, Department of Biomedical Engineering, Linköping University, Sweden, pp 62–64.Google Scholar
  19. Keller HP, Klaue P, Lübbers DW (1978) Transcutaneous pO2 measurement for evaluating skin allo-and autografts. Eur Surg Res 10:272–282.PubMedCrossRefGoogle Scholar
  20. Luther H, Banas J, Darweke-Pickardt G, Hoffmann K, Fabry H, Altmeyer P (1989) Die Kryochirurgie des Basalioms Ergebnisse einer retrospektiven Studie. Histologische Untersuchung der Kryoläsion. H G Z Hautkrankh 64/9:748–755.Google Scholar
  21. Maricq HR, Harper FE, Khan MM, Tan E, LeRoy EC (1989) Microvascular abnormalities as possible predictors of disease subsets in Raynaud phenomenon and early connective tissue disease. Clin Exp Rheumatol 1:195–205.Google Scholar
  22. Mignot J, Zahouani H, Rondot D, Nardin PH (1987) Morphological study of human skin relief. Bioeng Skin 3:177–196.Google Scholar
  23. Müller O (1937) Die feinsten Blutgefäße des Menschen in gesunden und kranken Tagen, vol 1. Enke, Stuttgart.Google Scholar
  24. Nilsson GE (1984) Signal processor for laser Doppler tissue flowmeters. Med Biol Eng Comput 22:343–348.PubMedCrossRefGoogle Scholar
  25. Nilsson GE, Tenland T, Öberg PA (1980a) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans BME 27:12–19.CrossRefGoogle Scholar
  26. Nilsson GE, Tenland T, Öberg PA (1980b) Evaluation of a laser Doppler flowmeter for measurement for tissue blood flow. IEEE Trans BME 27:597–604.CrossRefGoogle Scholar
  27. Oon T, Stafford T (1987) Cutaneous circulation. In: Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg JM (eds) Dermatology in general medicine, 3rd edn, vol 1. McGraw-Hill, New York, pp 357–367.Google Scholar
  28. Quinn AG, McLelland J, Essex T, Farr PM (1991) Measurement of cutaneous inflammatory reactions using a scanning laser-Doppler velocimeter. Br J Dermatol 125:30–37.PubMedCrossRefGoogle Scholar
  29. Rupee C (1980) Mikroskopische und elektronenmikroskopische Anatomie der Haut. In: Korting GW (ed) Dermatologic in Praxis und Klinik. Thieme, Stuttgart, pp 1.49-1.51Google Scholar
  30. Saur R, Schramm U, Steinhoff R, Wolff H (1991) Strukturanalyse der Hautoberfläche durch computergestützte Laser-Profilometrie. Hautarzt 42:499–506.PubMedGoogle Scholar
  31. Seitz G, Tiziani HJ (1986) 3-D-Koordinatenmessung durch optische Triangulation. Feinwerk Meßtechnik 94:423–425.Google Scholar
  32. Shawkett S, Dickerson C, Hazleman B, Brown MJ (1991) Prolonged effect of CGRP in Raynaud’s patients: a double-blind randomised comparison with prostacyclin. Br J Clin Pharmacol 32:209–213.Google Scholar
  33. Shepherd AP, Öberg PA (1990) Laser Doppler blood flowmetry. Kluwer, Dordrecht.Google Scholar
  34. Shepard AP, Riedel GL, Kile JW, Haumschild DJ, Maxwell LC (1987) Evaluation of an infrared laser Doppler blood flow meter. Am J Physiol 252:G832–G839.Google Scholar
  35. Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58.PubMedCrossRefGoogle Scholar
  36. Stüttgen G, Flesch U, Witt H, Wendt H (1980) Thermographic analysis of skin test reaction using AGA thermovision. Arch Dermatol Res 268:113–128.PubMedCrossRefGoogle Scholar
  37. Tenland T, Salerud G, Nilsson GE (1983) Spatial and temporal variations in human skin blood flow. Int J Microcirc Clin Exp 2:81–90.PubMedGoogle Scholar
  38. Thieme W (1987) Konturvermessung mit Lasern. Laser Magazin 4:5–8.Google Scholar
  39. Tønnesen KH (1978) Transcutaneous oxygen tension in imminent foot gangrene. Acta Anaesth Scand Suppl 68:107–110.CrossRefGoogle Scholar
  40. Wardell K (1992) Laser Doppler perfusion imaging. Linköping Studies in Science and Technology, Thesis 308, Linköping.Google Scholar
  41. Weindorf N, Schultz-Ehrenburg U (1988) Diagnostik der diabetischen Mikroangiopathie durch transcutane Sauerstoff (tcPO2)-Messung. Phlebol Proktol 17:131–133.Google Scholar
  42. Winkler K, Hoffmann K, el Gammal S, Karmann B, Altmeyer P (1992) The influence of hyaluronic acid on wound healing controlled by a standardized model for humans. In: Marks R, Plewig G (eds) The environmental threat to the skin. Dunitz, London, pp 319–331.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • K. Hoffmann
    • 1
  • M. Stücker
    • 1
  • T. Dirschka
    • 1
  • T. Krömer
    • 1
  • S. el Gammal
    • 1
  • A. Hoffmann
    • 1
  • P. Altmeyer
    • 1
  1. 1.Dermatological DepartmentRuhr University BochumBochumGermany

Personalised recommendations