Therapeutic Drug Monitoring and Dose Optimisation in Oncology

  • Merrill J. Egorin
Part of the ESO Monographs book series (ESO MONOGRAPHS)


Therapeutic drug monitoring, also frequently referred to as “clinical pharmacokinetics” or “applied pharmacokinetics”, has been described as the process of using drug concentrations, pharmacokinetic principles, and pharmacodynamic criteria to optimise drug therapy in individual patients [1]. Therefore, implicit in any discussion of therapeutic drug monitoring are the consideration and integration of certain aspects of pharmacokinetics and pharmacodynamics as well as those of laboratory, clinical, and economic reality. In beginning this discussion, it is worth noting that therapeutic drug monitoring is considered standard medical practice for many classes of drugs and the practice of “applied pharmacokinetics” is gaining increasing acceptance as an intrinsic and essential part of rational drug development. Although this chapter will deal with dose optimisation in individual patients, many of the concepts and issues addressed are equally applicable to the process referred to as “pharmacologically guided dose escalation” wherein pharmacokinetic/pharmacodynamic relationships elucidated in preclinical animal studies are used as a basis to move a drug through phase I clinical trials in the most rational and expeditious fashion.


Clin Oncol Therapeutic Drug Monitoring Plasma Drug Concentration Population Pharmacokinetic Model Limited Sampling Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evans WE: General principles of applied pharmacokinetics. In: Evans WE, Schentag JJ and Jusko WJ (eds) Applied Pharmacokinetics, Second edition. Applied Therapeutics, Inc. Spokane WA 1986 pp 1–8Google Scholar
  2. 2.
    Peck CC, Conner DP and Murphy MG: Visualizing drug effects and drug disposition. In: Bedside Clinical Pharmacokinetics. Simple Techniques for Individualizing Drug Therapy (revised edition). Applied Therapeutics Inc, Vancouver WA 1989 pp 17–19Google Scholar
  3. 3.
    Slattery JT, Gibaldi M and Koup JR: Prediction of maintenance dose required to attain a desired drug concentration at steady-state from a single determination of concentration after an initial dose. Clin Pharmacokinet 1980 (5):377–385PubMedCrossRefGoogle Scholar
  4. 4.
    Sadée W: Molecular mechanisms of drug action and pharmacokinetic-pharmacodynamic models. In: Borchardt RT, Repta AJ and Stella VJ (eds) Directed Drug Delivery. A Multidisciplinary Problem. Humana Press, Clifton New Jersey 1985 pp 35–49CrossRefGoogle Scholar
  5. 5.
    Ariens EJ and Simonis AM: A molecular basis of drug action. J Pharm Pharmacol 1964 (16):137–157CrossRefGoogle Scholar
  6. 6.
    Ariens EJ and Simonis AM: A molecular basis for drug action. The interaction of one or more drugs with different receptors. J Pharm Pharmacol 1964 (16):289–312CrossRefGoogle Scholar
  7. 7.
    Hill AV: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (Lond) 1910 (40):iv–viiGoogle Scholar
  8. 8.
    Wagner JG: Kinetics of pharmacologic response. I. Proposed relationship between response and drug concentration in the intact animal and man. J Theoret Biol 1968 (20): 173–201CrossRefGoogle Scholar
  9. 9.
    Levy G: Kinetics of pharmacologic effect. Clin Pharmacol Ther 1966 (7):362–372PubMedGoogle Scholar
  10. 10.
    Hoiford NHG and Sheiner LB: Kinetics of pharmacologic response. Pharmac Ther 1982 (16):143–166CrossRefGoogle Scholar
  11. 11.
    Colburn WA: Simultaneous pharmacokinetic and pharmacodynamic modeling. J Pharmacokin Biopharm 1981 (9):367–388CrossRefGoogle Scholar
  12. 12.
    Holford NHG: Drug concentration, binding and effect in vivo. Pharm Res 1984 (1):102–105CrossRefGoogle Scholar
  13. 13.
    Bondi JV and Tanner RD: Kinetic hysteresis as a tool for analysis of pharmacokinetic data. In: Smolen VF and Ball L (eds) Controlled Drug Bioavailability. Vol. I. Drug Product Design and Performance. John Wiley and Sons, New York 1984 pp 179–202Google Scholar
  14. 14.
    Ratain MJ, Schilsky RL, Conley BA, et al: Pharmacodynamics in cancer therapy. J Clin Oncol 1990(8):1739–1753PubMedGoogle Scholar
  15. 15.
    Egorin MJ, Van Echo DA, Whitacre MY, et al: Human pharmacokinetics, excretion and metabolism of the anthracycline antibiotic menogaril (7-OMEN, NSC 269148) and their correlation with clinical toxicities. Cancer Res 1986 (46):1513–1520PubMedGoogle Scholar
  16. 16.
    Egorin MJ, Sigman LM, Van Echo DA, et al: A Phase I clinical and pharmacokinetic study of hexamethylene bisacetamide (HMBA, NSC 95580) administered as a five-day continuous infusion. Cancer Res 1987 (47):617–623PubMedGoogle Scholar
  17. 17.
    Egorin MJ, Conley BA, Forrest A, et al: Phase I study and pharmacokinetics of menogaril (7-OMEN, NSC 269148) in patients with hepatic dysfunction Cancer Res 1987 (47):6104–6110PubMedGoogle Scholar
  18. 18.
    Trump DL, Egorin MJ, Forrest A, et al: Pharmacokinetic and pharmacodynamic analysis of 5-fluorouracil during 72 hour continuous infusion with and without dipyridamole. J Clin Oncol 1991 (in press)Google Scholar
  19. 19.
    Mortensen ME, Cacalupo AJ, Lo WD, et al: Inadvertent intrathecal injection of daunorubicin with fatal outcome. Medical and Pediatric Oncology 1991 Abstr 99 (in press)Google Scholar
  20. 20.
    Skipper HE, Schabel FM, Mellet LB, et al: Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationships in the design of optimal therapeutic schedules. Cancer Chemother Rep 1970 (54):431–450PubMedGoogle Scholar
  21. 21.
    Jusko WJ: Pharmacodynamics of chemotherapeutic effect: Dose-time-response relationships for phase-nonspecific agents. J Pharm Sci 1987 (60):892–895CrossRefGoogle Scholar
  22. 22.
    Bennett CL, Sinkule JA, Schilsky RL, et al: Phase I clinical and pharmacological study of 72-hour continuous infusion of etoposide in patients with advanced cancer. Cancer Res 1987 (47):1952–1956PubMedGoogle Scholar
  23. 23.
    Ratain MJ, Schilsky RL, Choi KE, et al: Adaptive control of etoposide dosing: Impact of interpatient pharmacodynamic variability. Clin Pharmacol Ther 1989(45):226–233PubMedCrossRefGoogle Scholar
  24. 24.
    Grochow LB, Noe DA, Ettinger DS, et al: A phase I trial of trimetrexate glucuronate (NSC 352122) given every 3 weeks: Clinical pharmacology and pharmacodynamics. Cancer Chemother Pharmacol 1989(24):314–320PubMedCrossRefGoogle Scholar
  25. 25.
    Ackland SP, Ratain MJ, Vogelzang NJ, et al: Pharmacokinetics and pharmacodynamics of long-term continuous-infusion doxorubicin. Clin Pharmacol Ther 1989 (45):340–347PubMedCrossRefGoogle Scholar
  26. 26.
    Schilsky RL, Olaughlin K and Ratain MJ: Phase I clinical and pharmacological study of thymidine (NSC 21548) and cisdiamminedichloroplatinum (II) in patients with advanced cancer. Cancer Res 1986(46):4184–4188PubMedGoogle Scholar
  27. 27.
    Fanucchi MP, Walsh TD, Fleisher M, et al: Phase I and clinical pharmacology study of trimetrexate administered weekly for three weeks. Cancer Res 1987(47):3303–3308PubMedGoogle Scholar
  28. 28.
    Thyss A, Milano G, Renee N, et al: Clinical pharmacokinetic study of 5-FU in continuous 5-day infusions for head and neck cancer. Cancer Chemother Pharmacol 1986 (16):64–66PubMedCrossRefGoogle Scholar
  29. 29.
    Rowinsky EK, Noe DA, Orr DW, et al: Clinical pharmacology of oral and i.v. N-methylformamide: A pharmacologic basis for lack of clinical antineoplastic activity. JNCI 1988 (80):671–678PubMedGoogle Scholar
  30. 30.
    Coleman CN, Halsey J, Cox RS, et al: Relationship between the neurotoxicity of the hypoxic cell radiosensitizer SR 2508 and the pharmacokinetic profile. Cancer Res 1987 (47):319–322PubMedGoogle Scholar
  31. 31.
    Grochow LB, Jones RJ, Brundrett RB, et al: Pharmacokinetics of busulfan: Correlation with veno-occlusive disease in patients undergoing bone marrow transplantation. Cancer Chemother Pharmacol 1990 (25):55–61CrossRefGoogle Scholar
  32. 32.
    van Groeningen CJ, Pinedo HM, Heddes J, et al: Pharmacokinetics of 5-fluorouracil assessed with a sensitive mass spectrometric method in patients on a dose escalation schedule. Cancer Res 1988 (48):6956–6961PubMedGoogle Scholar
  33. 33.
    Rodman JH, Abromowitch M, Sinkule JA, et al: Clinical pharmacodynamics of continuous infusion teniposide: Systemic exposure as a determinant of response in a phase I trial. J Clin Oncol 1987 (5):1007–1014PubMedGoogle Scholar
  34. 34.
    Santini J, Milano G, Thyss, A, et al: 5FU therapeutic monitoring with dose adjustment leads to improved therapeutic index in head and neck cancer. Br J Cancer 1989 (59):287–290PubMedCrossRefGoogle Scholar
  35. 35.
    Evans WE, Crom WR, Abramowitch M, et al: Clinical pharmacodynamics of high dose methotrexate in acute lymphocytic leukemia. N Engl J Med 1986 (314):471–477PubMedCrossRefGoogle Scholar
  36. 36.
    Hayder S, Lafolie P, Bjork O, et al: 6-mercaptopurine plasma levels in children with acute lymphoblastic leukemia: Relation to relapse risk and myelotoxicity. Ther Drug Monit 1989 (11):617–622PubMedCrossRefGoogle Scholar
  37. 37.
    Hryniuk WM: Average relative dose intensity and the impact on design of clinical trials. Sem Oncol 1987(14):65–74Google Scholar
  38. 38.
    Evans WE: Clinical pharmacodynamics of anticancer drugs: A basis for extending the concept of dose-intensity. Blut 1988 (56):241–248PubMedCrossRefGoogle Scholar
  39. 39.
    Greenblatt DJ: Predicting steady state serum concentrations of drugs. Ann Rev Pharmacol Toxicol 1979 (19):347–356CrossRefGoogle Scholar
  40. 40.
    Egorin MJ, Van Echo DA, Tipping SJ, et al: Pharmacokinetics and dosage reduction of carboplatin in patients with impaired renal function. Cancer Res 1984 (44):5432–5438PubMedGoogle Scholar
  41. 41.
    Egorin MJ, Van Echo DA, Olman EA, et al: Prospective validation of pharmacologically based dosing scheme for the cisplatin analog, carboplatin Cancer Res 1985 (45):6502–6506Google Scholar
  42. 42.
    Calvert AH, Newell DR, Gumbrell LA, et al: Carboplatin dosage: Prospective evaluation of a simple formula based on renal function. J Clin Oncol 1989 (7):1748–1756PubMedGoogle Scholar
  43. 43.
    Harland SJ, Newell DR, Siddik ZH, et al: Pharmacokinetics of cis-diammine-1,1-cyclobutane dicarboxylate platinum (II) in patients with normal and impaired renal function. Cancer Res 1984 (44):1693–1697PubMedGoogle Scholar
  44. 44.
    Taylor SG IV, Gelman RS, Falkson G, et al: Combination chemotherapy compared to tamoxifen as initial therapy for stage IV breast cancer in elderly woman. Ann Int Med 1986 (104):455–461PubMedGoogle Scholar
  45. 45.
    Benjamin RS, Wiernik PH and Bachur NR: Adriamycin chemotherapy — efficacy, safety and pharmacologic basis of an intermittent single high-dosage schedule. Cancer 1974 (33):19–27PubMedCrossRefGoogle Scholar
  46. 46.
    Brenner DE, Wiernik PH, Wesley M et al: Acute doxorubicin toxicity. Relationship to pretreatment liver function, response, and pharmacokinetics in patients with acute nonlymphocytic leukemia. Cancer 1984 (53):1042–1048PubMedCrossRefGoogle Scholar
  47. 47.
    Sulkes A and Collins JM: Reappraisal of some dosage adjustment guidelines. Cancer Treat Rep 1987(71):229–233PubMedGoogle Scholar
  48. 48.
    Ratain MJ, Mick R, Schilsky RL, et al: Pharmacologically based dosing of etoposide: A means of safely increasing dose intensity. J Clin Oncol 1991 (9):1480–1486PubMedGoogle Scholar
  49. 49.
    Mick R and Ratain MJ: Modeling interpatient pharmacodynamic (PD) variability of etoposide (VP-16). Proc Am Soc Clin Oncol 1991 (10):Abstr 274Google Scholar
  50. 50.
    Weinshilboum RM: Human pharmacogenetics. Fed Proc 1984 (43):2295–2297PubMedGoogle Scholar
  51. 51.
    Vesell ES: New directions in pharmacogenetics. Fed Proc 1984 (43):2319–2325PubMedGoogle Scholar
  52. 52.
    Ratain MJ, Propert K, Costanza M, et al: Population pharmacodynamic study of amonafide: CALGB 8862. Proc Am Assoc Cancer Res 1990 (31):Abstr A1074Google Scholar
  53. 53.
    Ratain MJ, Staubus AE, Schilsky RL, et al: Limited sampling models for amonafide (NSC 308847) Pharmacokinetics. Cancer Res 1988 (48):4127–4130PubMedGoogle Scholar
  54. 54.
    Grever MR, Staubus AE and Malspeis L. Correlation of N-acetylation phenotype with plasma levels of the N-acetylmetabolite of amonafide (NSC 308847). Proc Am Assoc Cancer Res 1990 (31):Abstr 1055Google Scholar
  55. 55.
    Ratain MJ, Mick R, Berezin F, et al: Prospective correlation of acetylator phenotype with amonafide toxicity. Proc Am Soc Clin Oncol 1991 (10):Abstr A275Google Scholar
  56. 56.
    Lennard L, Keen D, Lilleyman JS: Oral 6-mercaptopurine in childhood leukemia: Parent drug pharmacokinetics and active metabolite concentrations. Clin Pharmacol Ther 1986 (40):287–292PubMedCrossRefGoogle Scholar
  57. 57.
    Lennard L, Van Loon JA, Lilleyman JS, et al: Thiopurine pharmacogenetics in leukemia; correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 1987(41):18–24PubMedCrossRefGoogle Scholar
  58. 58.
    Herber S, Lennard L, Lilleyman JS, et al: 6-mercaptopurine: Apparent lack of relation between prescribed dose and biological effect in children with leukemia. Br J Cancer 1982 (46):138–141PubMedCrossRefGoogle Scholar
  59. 59.
    Lennard L, Rees, CA, Lilleyman JS, et al: Childhood leukemia: A relationship between intracellular 6-mercaptopurine metabolism and neutropenia. Br J Clin Pharmacol 1983 (16):359–363PubMedGoogle Scholar
  60. 60.
    Lennard L, Lilleyman JA: Are children with lymphoblastic leukemia given enough 6-mercaptopurine? Lancet 1987 (2):785–787PubMedCrossRefGoogle Scholar
  61. 61.
    Lennard L, Lilleyman JS: Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 1989 (7):1816–1823PubMedGoogle Scholar
  62. 62.
    Evans WE, Crom WR and Yalowich J: Methotrexate. In: Evans et al (eds) Applied Pharmacokinetics: Principles of Therapeutic Drug Monitoring, 2nd edition. Applied Therapeutics Ine, Spokane WA 1986 pp 1009–1056Google Scholar
  63. 63.
    Conley BA, Forrest A, Egorin MJ, et al: Phase I trial employing adaptive control dosing of hexamethylene bisacetamide (HMBA, NSC 95580). Cancer Res 1989 (44):3436–3440Google Scholar
  64. 64.
    Conley BA, Forrest A, Egorin M, Zuhowski E, et al: Adaptive control phase I trial of hexamethylene bisacetamide (HMBA) with and without concurrent alkalinization. Proc Am Soc Clin Oncol 1988 (7):61Google Scholar
  65. 65.
    Forrest A, Conley BA, Egorin MJ, et al: Adaptive control of hexamethylene bisacetamide (HMBA) pharmacodynamics. Proc Am Soc Clin Oncol 1988 (7):61Google Scholar
  66. 66.
    Scher HI, Jodrell DI, Iversen JM, et al: The use of adaptive control with feedback to individualize suramin dosing. Cancer Res 1991 (in press)Google Scholar
  67. 67.
    Jodrell D, Zuhowski E, Egorin M, et al: Intermittent bolus dosing with suramin: The use of adaptive control with feedback (ACF). Proc Am Soc Clin Oncol 1991 (10):92Google Scholar
  68. 68.
    Hutson R, Arzoomanian R, Tombes MB, et al: Test dose guided rapid iv suramin infusions with weekly iv maintenance doses. Proc Am Soc Clin Oncol 1991 (10):99Google Scholar
  69. 69.
    Cooper M, LaRocca R, Stein R, et al: Pharmacokinetic monitoring is necessary for the safe use of suramin as an anticancer drug. Proc Am Assoc Cancer Res 1989 (30):963Google Scholar
  70. 70.
    Iversen J, Scher H, Motzer R, et al: Suramin (SUR): Impact of individualized pharmacokinetics (PK) dosing on outcome in patients with prostatic cancer (PC) and renal cell carcinoma (RCC). Proc Am Soc Clin Oncol 1991 (10):103Google Scholar
  71. 71.
    Grasela TH Jr, Antal EJ, Townsen RJ, et al: An evaluation of population pharmacokinetics in therapeutic trials. Part I. Comparison of methodologies. Clin Pharm Therap 1986 (39):605–612PubMedCrossRefGoogle Scholar
  72. 72.
    Sheiner LB, Rosenberg B and Marathe VV: Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 1977 (5):445–479PubMedCrossRefGoogle Scholar
  73. 73.
    Sheiner LB and Beal SL: Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 1980 (8):553–571PubMedCrossRefGoogle Scholar
  74. 74.
    Sheiner LB and Beal SL: Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model and experimental pharmacokinetic data. J Pharmacokinet Biopharm 1981 (9):635–651PubMedCrossRefGoogle Scholar
  75. 75.
    Sheiner LB and Beal SL: Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical data. J Pharmacokinet Biopharm 1983 (11):303–319PubMedCrossRefGoogle Scholar
  76. 76.
    Sheiner LB: The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods. Drug Metabolism Rev 1984 (15):153–171CrossRefGoogle Scholar
  77. 77.
    Beal SL: Population pharmacokinetic data and parameter estimation based on their first two statistical moments. Drug Metabolism Rev 1984 (15):173–193CrossRefGoogle Scholar
  78. 78.
    Beal SL and Sheiner LB: Estimating population kinetics. CRC Critical Rev Biomed Engin 1982 (8):195–222Google Scholar
  79. 79.
    Whiting B, Kelman AW and Grevel J: Population pharmacokinetics theory and clinical application. Clin Pharmacokin 1986 (11):387–401CrossRefGoogle Scholar
  80. 80.
    Beal SL and Sheiner LB: The NONMEM system. Am Statistician 1980 (34):118–119CrossRefGoogle Scholar
  81. 81.
    Steimer JL, Mallet A, Golmard JL, et al: Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. Drug Metabolism Rev 1984 (15):265–292CrossRefGoogle Scholar
  82. 82.
    Prévost G: Estimation of a normal probability density function from samples measured with non-negligible and non-constant dispersion. Internal Report, Anders-Gerbios. 2 avenue du ler mai, F-91120 Palaiseau. 1977Google Scholar
  83. 83.
    Steimer JL, Mallet A and Mentré F: Estimating interindividual pharmacokinetic variability. In: Rowland M, Sheiner LG and Steiner JL (eds) Variability in Drug Therapy, Description, Estimation and Control. Raven Press, New York 1985 pp 65–111Google Scholar
  84. 84.
    de Valeriola D, Forrest A, Egorin M, et al: Standard (S2S) vs Iterative (IT2S) 2 stage population analysis of daunorubicin (D1) and daunorubicinol (D2) pharmacokinetics. Proc Am Assoc Cancer Res. 1991 (32)178Google Scholar
  85. 85.
    Jodrell D, Forrest A, Hawtof, J, et al: The population pharmacokinetics of CI941, a novel anthrapyrazole anticancer agent. Clin Pharm Therap 1991 (49):195Google Scholar
  86. 86.
    Forrest A, Hawtof J and Egorin MJ: Evaluation of a new program for population PK/PD analysis -Applied to simulated phase I data. Clin Pharm Therap 1991 (49):153Google Scholar
  87. 87.
    D’Argenio DZ and Schumitzky A: ADAPT II user’s guide. Biomed Simulation Resources USC, Los Angeles 1990Google Scholar
  88. 88.
    D’Argenio DZ and Schumitzky A: A program package for simulation and parameter estimation in pharmacokinetic systems. Comp Prog Biomed 1979(9):115–134CrossRefGoogle Scholar
  89. 89.
    Ratain MJ and Vogelzang NJ: Limited sampling model for vinblastine pharmacokinetics. Cancer Treat Rep 1987 (71):935–939PubMedGoogle Scholar
  90. 90.
    Ackland SP, Choi KE, Ratain MJ, et al: Human plasma cyclophosphamides of thiotepa following administration of high-dose thiotepa and cyclophosphamide. J Clin Oncol 1988 (6):1192–1196PubMedGoogle Scholar
  91. 91.
    Ratain MJ, Robert J and van der Vijgh WJ: Limited sampling models for doxorubicin pharmacokinetics. J Clin Oncol 1991 (9):871–876PubMedGoogle Scholar
  92. 92.
    Egorin MJ, Forrest A, Belani CP, et al: A limited sampling strategy for cyclophosphamide pharmacokinetics. Proc Am Soc Clin Oncol 1989 (8):63Google Scholar
  93. 93.
    Launay MC, Milano G, Iliadis A, et al: A limited sampling procedure for estimating adriamycin pharmacokinetics in cancer patients. Br J Cancer 1989(60):89–92PubMedCrossRefGoogle Scholar
  94. 94.
    Peck CC and Rodman JH: Analysis of clinical pharmacokinetic data for individualizing drug dosage regimens. In: Evans WE, Schentag JJ and Jusko WJ (eds) Applied Pharmacokinetics. Second edition. Applied Therapeutics Inc, Spokane WA 1986 pp 55–82Google Scholar
  95. 95.
    D’Argenio DZ: Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm 1981 (9):739–756PubMedCrossRefGoogle Scholar
  96. 96.
    Schumacher GE: Choosing optimal sampling times for therapeutic drug monitoring. Clin Pharm 1985 (4):84–92PubMedGoogle Scholar
  97. 97.
    Lacey L and Dumme A: The design of pharmacokinetic experiments for model discrimination. J Pharmacokinet Biopharm 1984 (12):351–365PubMedCrossRefGoogle Scholar
  98. 98.
    Peck CC and Perkins SW: Optimal sampling theory in a Bayesian context: a framework for choosing number and timing of clinical drug level measurements. Clin Pharmacol Ther 1984 (35):26CrossRefGoogle Scholar
  99. 99.
    Jusko WJ: Guideline for collection and analysis of pharmacokinetic data. In: Evans WE, Schentag JJ and Jusko WJ (eds) Applied Pharmacokinetics. Second edition. Applied Therapeutics Inc, Spokane WA 1986 pp 9–54Google Scholar
  100. 100.
    Voeh S: Cost-effectiveness of therapeutic drug monitoring. Clin Pharmacokin 1987 (13):131–140CrossRefGoogle Scholar
  101. 101.
    Sheiner LB and Beal SL: Some suggestions for measuring predictive performance. J Pharmacokin Biopharm 1981 (9):503–512CrossRefGoogle Scholar
  102. 102.
    Dao TD: Cost-benefit and cost-effectiveness analysis of drug therapy. Am J Hosp Pharm 1985 (42):791–802PubMedGoogle Scholar
  103. 103.
    Doubilet P, Weinstein MC and McNeil BJ: Use and misuse of the term “cost effective” in medicine. New Engl J Med 1986 (314):253–255PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Merrill J. Egorin
    • 1
    • 2
  1. 1.Division of Developmental TherapeuticsUniversity of Maryland Cancer CenterBaltimoreUSA
  2. 2.Division of Medical Oncology, Department of MedicineUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations