Skip to main content

Part of the book series: ESO Monographs ((ESO MONOGRAPHS))

Abstract

Recently, a torrent of biochemical and biological discoveries has more precisely begun to define the nature of the malignant phenotype. These findings present a formidable challenge to drug discovery teams. How can this knowledge be harnessed and the approach emulated? Sadly, the elegance and precision of some of the insights provided by molecular and cellular biologists have not yet been matched by the efforts of medicinal chemists and pharmacologists. It is both disappointing and frustrating that the anticancer drugs showing clinical promise in 1991 are still crude cell poisons, not dissimilar from those which exist in the current pharmacopoeia. How might progress be made?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rozengurt E: Early signals in the mitogenic response. Science (Washington) 1986 (234):161–166

    Article  CAS  Google Scholar 

  2. Cantley LC, Auger, KR, Carpenter C, Duckworth B, Graziani A, Kapeller R and Soltoff S: Oncogenes and signal transduction. Cell 1991 (64):281–302

    Article  PubMed  CAS  Google Scholar 

  3. Heldin C-H, Betsoltz C, Claesson-Welsh L and Westermark B: Subversion of growth regulatory pathways in malignant transformation. Biochim Biophys Acta 1987 (907):219–244

    PubMed  CAS  Google Scholar 

  4. Bishop JM: Molecular themes in oncogenesis. Cell 1991 (64):235–248

    Article  PubMed  CAS  Google Scholar 

  5. Rozengurt E: Neuropeptides as cellular growth factors. Eur J Clin Invest 1991 (21):123–134

    Article  PubMed  CAS  Google Scholar 

  6. Cuttitta F, Carney DN, Mulshine J, Moody TW, Redorko J, Fischler A and Minna JD: Bombesin-like peptides can function as autocrine growth factors in human small cell lung cancer. Nature (London) 1985 (316):823–826

    Article  CAS  Google Scholar 

  7. Sinnett-Smith J, Lehman W and Rozengurt E: Bombesin receptor in membranes from Swiss 3T3 cells. Binding characteristics, affinity labelling and modulation by guanine nucleotides. Biochem J 1990 (265):485–493

    PubMed  CAS  Google Scholar 

  8. Battey JF, Way JM, Corjay MH, Shapira H, Kusano K, Harkins R, Wu JM, Slattery T, Mann E and Feldman RI: Molecular cloning of the bombesin/GRP receptor from Swiss 3T3 cells. Proc Natl Acad Sci (USA) 1990 (88):395–399

    Article  Google Scholar 

  9. Dohlman GH, Thorner J, Caron MG and Lefkowitz RJ: Model systems for the study of seven-transmembrane segment receptors. Ann Rev Biochem 1991 (60):653–688

    Article  PubMed  CAS  Google Scholar 

  10. Woll PJ and Rozengurt E: Multiple neuropeptides mobilise calcium in small cell lung cancer: effects of vasopressin, bradykinin, cholecystokinin, galinin and neurotensin. Biochem Biophys Res Commun 1989(164):66–73

    Article  PubMed  CAS  Google Scholar 

  11. Woll PJ and Rozengurt E: A neuropeptide antagonist that inhibits the growth of small cell lung cancer in vitro. Cancer Res 1990 (50):3968–3973

    PubMed  CAS  Google Scholar 

  12. Sethi T and Rozengurt E: Multiple neuropeptides mobilise calcium in small cell lung cancer: effects of bradykinin, vasopressin, cholecystokinin, galinin and neurotensin. Cancer Res 1991 (51):3621–3623

    PubMed  CAS  Google Scholar 

  13. Yarden Y and Ullrich A: Growth factor receptor tyrosine kinases. Ann Rev Biochem 1988 (57):443–478

    Article  PubMed  CAS  Google Scholar 

  14. Jove R and Hanafusa H: Cell transformation by the viral src oncogene. Ann Rev Cell Biol 1987 (3):31–56

    Article  PubMed  CAS  Google Scholar 

  15. Presek P and Reuter C: Amiloride inhibits the protein tyrosine kinases associated with the cellular and the transforming src-gene products. Biochem Pharmac 1987 (36):2821–2826

    Article  CAS  Google Scholar 

  16. Nakano H, Kobayashi E, Takahashi I, Tamaoki T, Kuzuu Y and lba H: Staurosporine inhibits tyrosine-specific kinase activity of Rous sarcoma virus transforming protein p60. J Antibiot 1987 (40):706–708

    PubMed  CAS  Google Scholar 

  17. Kruse CH, Holden KG, Pritchard ML, Feild JA, Rieman DJ, Greig RG and Poste G: Synthesis and evaluation of multisubstrate inhibitors of an oncogene-encoded tyrosine-specific protein kinase. 1. Med Chem 1988 (31):1762–1767

    Article  CAS  Google Scholar 

  18. Kruse CH, Holden KG, Offen P, Pritchard ML, Feild JA, Rieman DJ, Bender PE, Ferguson B, Greig RG and Poste G: Synthesis and evaluation of multisubstrate inhibitors of an oncogene-encoded tyrosine-specific protein kinase. 2. Med Chem 1988 (263):813–822

    Google Scholar 

  19. Fujita-Yamaguchi Y, Sacks DB, McDonald JM, Sahal D and Kathuria S: Effect of basic polycations and proteins on purified insulin receptor. Insulin-independent activation of the receptor tyrosine-specific protein kinase by poly (L-lysine). Biochem J 1989(263):813–822

    PubMed  CAS  Google Scholar 

  20. Geahlen RL and McLaughlin JL: Piceatannol (3,4,3′,5′-tetrahydroxy-trans-stilbene) is a naturally occurring protein tyrosine kinase inhibitor. Biochem Biophys Res Commun 1989 (165):241–245

    Article  PubMed  CAS  Google Scholar 

  21. Glossman H, Presek P and Eigenbrodt E: Quercetin inhibits tyrosine phosphorylation by the cyclic nucleotide-independent, transforming protein kinase pp60src. Arch Pharmacol 1981 (317):100–103

    Article  Google Scholar 

  22. Graziani Y, Erikson E and Erikson RL: The effect of quercetin on the phosphorylation activity of the Rous sarcoma virus transforming gene product in vitro and in vivo. Eur J Biochem 1983 (135):583–589

    Article  PubMed  CAS  Google Scholar 

  23. Hanks SK, Quinn AM and Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science (Washington) 1988 (241):42–52

    Article  CAS  Google Scholar 

  24. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M and Fukami Y: Genestein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987 (262):5592–5595

    PubMed  CAS  Google Scholar 

  25. Geahlen RL, Koonchanok NM, McLaughlin JL and Pratt DE: Inhibition of protein tyrosine kinase activity by flavanoids and related compounds. J Natl Prod 1989 (52):982–986

    Article  CAS  Google Scholar 

  26. Ogawara H, Akiyama T, Watanabe S, Ito N, Kobori M and Seoda Y: Inhibition of protein tyrosine kinase activity by synthetic isoflavones and flavones. J Natl Prod 1989 (42):340–343

    CAS  Google Scholar 

  27. Cunningham B, Threadgill MD. Groundwater PW, Dale I and Hickman JA: Synthesis and biological evaluation of a series of flavones designed as inhibitors of protein tyrosine kinases. 1991 (submitted)

    Google Scholar 

  28. Cushman M, Nagarathanmam D, Burg DL and Geahlen RL: Synthesis and protein tyrosine kinase activities of flavanoid analogues. J Med Chem 1991 (34):798–806

    Article  PubMed  CAS  Google Scholar 

  29. Geissler JF, Traxler P, Regenass U, Murray BJ, Roesel JL, Meyer T, McGlynn E, Storni A and Lydon NB: Thiazolidine-diones. Biochemical and biological activity of a novel class of tyrosine protein kinase inhibitors. J Biol Chem 1990 (265):22255–22261

    PubMed  CAS  Google Scholar 

  30. Imoto M, Umezawa K, Komuro K, Sawa T, Takeuchi T and Umezawa H: Antitumor activity of erbstatin, a tyrosine protein kinase inhibitor. Jpn J Cancer Res 1987(78):2129–2135

    Google Scholar 

  31. Bishop WR, Petrin J, Wang L, Ramesh U and Doll RJ: Inhibition of protein kinase C by the tyrosine kinase inhibitor erbstatin. Biochem Pharmac 1990 (40):2129–2135

    Article  CAS  Google Scholar 

  32. Toi M, Mukaida H, Wada T, Hirabayashi N, Toge T, Hori H and Umezawa K: Antineoplastic effect of erbstatin on human mammary and esophageal tumors in athymic mice. Eur J Cancer 1990 (26):722–724

    Article  PubMed  CAS  Google Scholar 

  33. Levitski A: Tyrphostins — potential antiproliferative agents and novel molecular tools. Biochem Pharmac 1990 (40):913–918

    Article  Google Scholar 

  34. Gazit A, Yaish P, Gilon C and Levitski A: Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem 1989 (32):2344–2352

    Article  PubMed  CAS  Google Scholar 

  35. Posner I, Gazit A, Gilon C and Levitski A: Tyrphostins inhibit the epidermal growth factor receptor-mediated breakdown of phosphoinositides. FEBS Lett 1989 (257):287–291

    Article  PubMed  CAS  Google Scholar 

  36. Gazit A, Osherov N, Posner I, Yaish P, Poradosu E, Gilon C and Levitski A: Tyrphostins 2. Heterocyclic and a-substituted benzylidenemalononitrile tyrphostins as potent inhibitors of EGF receptor and ErbB2/neu tyrosine kinases. J Med Chem 1991 (34):1896–1907

    Article  PubMed  CAS  Google Scholar 

  37. Slamon DJ, Clark GM, Wong SJ, Levin WJ, Ullrich A and McGuire WJ: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (Washington) 1987 (235):177–179

    Article  CAS  Google Scholar 

  38. Faaland A, Mermelstein H, Hayashi J and Laskin JD: Rapid uptake of tyrphostin into A431 human epidermoid cell is followed by delayed inhibition of epidermal growth factor receptor (EGF)-stimulated EGF receptor tyrosine kinase activity. Mol Cell Biol 1991 (11):2697–2703

    PubMed  CAS  Google Scholar 

  39. Yoneda T, Lyall RM, Alsina MM, Person PE, Spada AP, Levitski A, Zilberstein A and Mundy GR: The antiproliferative effects of tyrosine kinase inhibitors tyrphostins on a human squamous cell carcinoma in vitro and in nude mice. Cancer Res 1991 (51):4430–4435

    PubMed  CAS  Google Scholar 

  40. Shiraishi T, Owada MK, Tatsuka M, Yamashita T, Watanabe K and Kakunaga T: Specific inhibitors of tyrosine-specific protein kinases: properties of 4-hydroxycinnamide derivatives in vitro. Cancer Res 1989(49):2374–2378

    PubMed  CAS  Google Scholar 

  41. Izumi T, Secki Y, Akanuma Y, Takaku F and Kasuga M: Requirement for receptor-intrinsic tyrosine kinase activities during ligand-induced membrane ruffling of KB cells. Essential sites of src-related growth factor receptor kinases. J Biol Chem 1988 (263):10386–10393

    PubMed  CAS  Google Scholar 

  42. Kipreos ET and Wang JYJ: Reversible dependence on growth factor interleukin-3 in myeloid cells expressing temperature sensitive v-abl oncogene. Oncogene Res 1988 (2):277–284

    PubMed  CAS  Google Scholar 

  43. Koch CA, Anderson D, Moran MF, Ellis C and Pawson T: SH2 and SH3 domains: elements that control interactions of cytoplasmic signalling proteins. Science (Washington) 1991 (252):668–674

    Article  CAS  Google Scholar 

  44. O’Brien MC, Fukui Y and Hanafusa H: Activation of the proto-oncogene p60-src by point mutations in the SH2 domain. Mol Cell Biol 1990 (10):2855–2862

    PubMed  Google Scholar 

  45. Berridge MJ: Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann Rev Biochem 1987 (56):159–193

    Article  PubMed  CAS  Google Scholar 

  46. Hirata M, Watanabe Y, Ishimatsu T, Kebe T, Kimura Y, Yamaguchi K, Ozaki S and Koga T: Synthetic inositol trisphosphate analogs and their effects on phosphatase, kinase and the release of Ca2+. J Biol Chem 1989 (264):20303–20308

    PubMed  CAS  Google Scholar 

  47. Safrany ST, Wojcikiewicz RJ, Strupish J, McBain J, Cooke AM, Potter BV and Nahorski SR: Synthetic phosphorothioate-containing analogues of inositol 1,4,5-trisphosphate mobilize intracellular calcium stores and interact differentially with inositol 1,4,5-trisphosphate 5-phosphatase and 3-kinase. Mol Pharmacol 1991 (39):754–761

    PubMed  CAS  Google Scholar 

  48. Kemp GJ, Bevington A, Khodja D, Challa A and Russell GG: 32P-labelling anomalies in human erythrocytes. Is there more than one pool of Pi? Biochem J 1989 (264):729–736

    PubMed  CAS  Google Scholar 

  49. Powis G, Aksoy IA, Melder DC, Aksoy S, Eichinger H, Fauq AH and Kozikowski AP: D-3-Deoxy-3-substituted myo-inositol analogues as inhibitors of cell growth. Cancer Chemother Pharmacol 1991 (in press)

    Google Scholar 

  50. Gescher A and Dale IL: Protein kinase C — a novel target for rational anticancer drug design? Anticancer Drug Des 1989 (4):93–105

    PubMed  CAS  Google Scholar 

  51. O’Brian CA and Ward NE: Biology of the protein kinase C family. Cancer Metastasis Rev 1989 (3):199–214

    Google Scholar 

  52. Kikkawa U, Kishimoto A, Nishizuka Y: The protein kinase C family: heterogeneity and its implications. Ann Rev Biochem 1989 (58):31–44

    Article  PubMed  CAS  Google Scholar 

  53. Pettit GR, Hartwell JL and Wood HB: Antineoplastic components of marine animals. Nature (London) 1970 (227):962–965

    Article  CAS  Google Scholar 

  54. Schuchter LM, Esa AH, May WS, Laulis MK, Pettit GR and Hess AD: Successful treatment of murine melanoma with bryostatin 1. Cancer Res 1991 (51):682–687

    PubMed  CAS  Google Scholar 

  55. Lilly M, Brown C, Pettit G and Kraft A: Bryostatin 1: a potential antileukemic agent for chronic myelomonocytic leukemia. Leukemia 1991 (5):283–287

    PubMed  CAS  Google Scholar 

  56. McCrady CW, Staniswalis J, Pettit GR, Howe C, Grant S: Effect of pharmacological manipulation of protein kinase C by phorbol dibutyrate and bryostatin 1 on the clonogenic response of human granulocyte-macrophage progenitors to recombinant GM-CSF. Br J Haematol 1991 (77):5–15

    Article  PubMed  CAS  Google Scholar 

  57. Kraft AS, Smith JB and Berkow RL: Bryostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60. Proc Natl Acad Sci (USA) 1986 (83):1334–1338

    Article  CAS  Google Scholar 

  58. Dale IL and Gescher A: Effects of activators of protein kinase C, including bryostatins 1 and 2, on the growth of A549 human lung carcinoma cells. Int J Cancer 1989 (43):158–163

    Article  PubMed  CAS  Google Scholar 

  59. Hocevar BA and Fields AP: Selective translocation of βII-protein kinase C to the nucleus of human promyelocytic (HL60) leukemia cells. J Biol Chem 1991 (266):28–33

    PubMed  CAS  Google Scholar 

  60. Berdel WE: Membrane-interactive lipids as experimental anticancer drugs. Br J Cancer 1991 (64):208–211

    Article  PubMed  CAS  Google Scholar 

  61. Munder PG, Weltzien HU and Modolell M: Lysolecethin analogues: a new class of immunopotentiators. In: Meischer PA (ed) VII International Symposium on Immunopathology. Schwabe Publ, Basel 1977 pp 411 –423

    Google Scholar 

  62. Bazill W and Dexter TM: Role of endocytosis in the action of ether lipids on WEHI-3B, HL-60, and FDCP-Mix A4 cells. Cancer Res 1990 (50):7505–7512

    PubMed  CAS  Google Scholar 

  63. Lazenby CM, Thompson MG and Hickman JA: Elevation of intracellular calcium by the ether lipid SRI62-834. Cancer Res 1990 (50):3327–3330

    PubMed  CAS  Google Scholar 

  64. Seewald MJ, Olsen RA, Sehgal I, Melder DC, Modest EJ and Powis G: Inhibition of growth factor-dependent inositol phosphate Ca2+ signalling by antitumor ether lipid analogues. Camcer Res 1990 (50):4458–4463

    CAS  Google Scholar 

  65. Workman P: personal communication

    Google Scholar 

  66. Ruoslahti E: Fibronectin and its receptors. Ann Rev Biochem 1988 (57):375–413

    Article  PubMed  CAS  Google Scholar 

  67. Barcellos-Hoff MH, Aggeler J, Ram TG and Bissel MJ: Functional differentiation and alveolar morphogenesis of primary mammary epithelial cell cultures on reconstituted basement membrane. Development 1989 (105):223–235

    PubMed  CAS  Google Scholar 

  68. Walling JM, Blackmore M, Hickman JA and Townsend KMS: Role of the extracellular matrix on the growth and differentiated phenotype of murine colonic adenocarcinoma cells in vitro. Int J Cancer 1991 (47):776–783

    Article  PubMed  CAS  Google Scholar 

  69. La Rocca RV, Stein CA and Myers CE: Suramin: prototype of a new generation of antitumour compounds. Cancer Cells 1990 (2):106–115

    PubMed  Google Scholar 

  70. Waxman S, Rossi GB and Takaku F: The status of differentiation therapy. Serono Symposia. Raven Press, New York 1991

    Google Scholar 

  71. Arai K, Lee F, Miyajima A, Miyatake S Arai N and Yokota T: Cytokines: coordinators of immune and inflammatory responses. Ann Rev Biochem 1990 (59):783–836

    Article  PubMed  CAS  Google Scholar 

  72. Guy GR, Chua SP, Wong NS, Ng SB and Tan YH: Interleukin 1 and tumor necrosis factor activate common multiple protein kinases in human fibroblasts. J Biol Chem 1991 (266):14343–14352

    PubMed  CAS  Google Scholar 

  73. Dive C and Hickman JA: Drug-target interactions: only the first step in the commitment to a programmed cell death? Br J Cancer 1991 (64):192–196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hickman, J.A. (1992). Membrane and Signal Transduction Targets. In: Workman, P. (eds) New Approaches in Cancer Pharmacology: Drug Design and Development. ESO Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77874-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77874-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77876-6

  • Online ISBN: 978-3-642-77874-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics