Advertisement

Joint Distribution in a Fractured Carbonate Reservoir in the Umbria-Marche Anticlines (Central Italy)

  • M. Barchi
  • A. Bernasconi
  • F. Brozzetti
  • G. Lavecchia
  • M. Menichetti
  • G. Minelli
  • S. Nardon
  • G. Pialli
Part of the Special Publication of the European Association of Petroleum Geoscientists book series (3148, volume 3)

Abstract

A detailed structural analysis of the discontinuities of the Calcare Massiccio Fm. (Early Liassic) of the Umbria-Marche fold and thrust belt (central Italy) was carried out in order to define the fracture pattern typical of a massive limestones from a carbonate shelf at the core of an anticline structure, This research was made with the aim to apply the results to the modelling of the Cavone oil field fractured reservoir (Po Valley subsurface, northern Italy). The attitudes of rock discontinuities, including bedding, faults and joints were surveyed and their temporal and spatial relationships recorded.

Joints are the most common structures and in average represent about 85% of the mapped discontinuities. The joint pattern is independent of the position within each anticline. Cross-joints, sub-perpendicular to the axial trend of the host anticline, are the most common type of joints. Longitudinal joints, sub parallel to the axial trend, and diagonal joints, oblique to the axial trend, are also present although less abundant. The latter are usually associated with zones of strike-slip deformation. Bedding joints are very rare.

The overall characteristics of the analyzed jointing are regionally consistent and fit well into the two-stage history of deformation of the Umbria-Marche fold and thrust belt. Thus, the cross and longitudinal joints can be interpreted as extension joints developed at the end of the folding stage (Late Miocene), whereas the diagonal joints can be interpreted as shear joints formed mainly during the thrusting and shearing stage (Early Pliocene).

Keywords

Late Miocene Survey Station Thrust Belt Shear Joint Bedding Joint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bally A W, Burbi L, Cooper C, Ghelardoni R (1986) Balanced sections and seismic reflection profiles across the Central Apennines. Mem Soc Geol Ital 35: 257–310Google Scholar
  2. Barchi M, Guzzetti F (1989) STRANA: a Macintosh computer program for the representation and statistical analysis of orientation data in structural geology. In: Hanley J Y, Merriam D F (eds) Microcomputer applications in geology II. Pergamon Oxford, pp 13–24Google Scholar
  3. Barchi M, Guzzetti F, Lavecchia G, Lolli O, Bontempo R (1988) Sezioni geologiche bilanciate attraverso il sistema a pieghe umbro-marchigiano: 1-La sezione Trevi-Valle dell’Ambro. Boll Soc Geol Ital 107: 109–130Google Scholar
  4. Calamita F, Deiana G (1982) Contributo alle conoscenze strutturali dell’ Appennino umbro-marchigiano: la tettonica polifasata. Stud Geol Camerti 7: 7–15Google Scholar
  5. Centamore E, Chiocchini M, Deiana G, Micarelli A, Pieruccini U (1971) Contributo alla conoscenza del Giurassico dell’Appenino umbro-marchigiano. Studi Geol Camerti 1: 70–90Google Scholar
  6. Decandia F A, Giannini E (1977) Studi geologici nell’Appennino umbromarchigiano. 1. Evidenze di due fasi tettoniche terziarie a SE di Spoleto (Prov. di Perugia). Boll Soc Geol Ital 96: 713–722Google Scholar
  7. Galdenzi S (1990) La struttura giurassica di Monte Acuto (Appennino Umbro-marchigiano) Boll Soc Geol Ital 109: 707–722Google Scholar
  8. Lavecchia G (1985) Il Sovrascorrimento dei Monti Sibillini: analisi cinematica e strutturale. Boll Soc Geol Ital 104: 161–194Google Scholar
  9. Lavecchia G, Minelli G, Pialli G (1983) Strutture plicative minori dell’ Appennino umbro-marchigiano. Boll Soc Geol Ital 102: 95–112Google Scholar
  10. Lavecchia G, Minelli G, Pialli G (1988) The Umbria-Marche arcuate fold belt (Italy). Tectonophysics 146: 125–137CrossRefGoogle Scholar
  11. Menichetti M (1989) Hydrogeology of M. Cucco karst system in central Italy. X Cong Int Speleol Union, Budapest 3: 748–750Google Scholar
  12. Menichetti M, Pialli G (1986) Geologia strutturale del preappennino umbro tra i monti di Gubbio e la Catena del M. Petrano-M. Cucco. Mem Soc Geol Ital 35: 371–388Google Scholar
  13. Nardon S, Marzorati D, Bernasconi A, Cornini S, Gonfalini M, Mosconi S, Romano A, Terdich P (1991) Fractured carbonate reservoir characterization and modelling: a multidisciplinary case study from the Cavone oil field, Italy. First Break 9 (12): 553–565Google Scholar
  14. Passeri L (1972) Stratigrafia e sedimentologia dei calcari Giurassici del Monte Cucco (Appennino Umbro) Geol Rom 10: 93–130Google Scholar
  15. Price N J (1966) Fault and joint development in brittle and semi-brittle rock. Pergamon, Oxford, 176 ppGoogle Scholar
  16. Ramsay J G and Huber M I (1987) The techniques of modern structural geology, vol 2. Folds and fractures. Academic Press, London, 700 ppGoogle Scholar
  17. Roeder D (1984) Tectonic evolution of the Apennines. Meeting-Fossil fuels in Europe. AAPG Bull 68: 6–8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Barchi
    • 1
  • A. Bernasconi
    • 2
  • F. Brozzetti
    • 1
  • G. Lavecchia
    • 1
  • M. Menichetti
    • 1
  • G. Minelli
    • 1
  • S. Nardon
    • 2
  • G. Pialli
    • 1
  1. 1.Dipartimento di Scienze della TerraUniversita’ di PerugiaPerugiaItaly
  2. 2.AGIP S.p.a., SGELMilanoItaly

Personalised recommendations