Skip to main content

Experimental Models of Injury in the Mammalian Yolk Sac

  • Chapter
The Human Yolk Sac and Yolk Sac Tumors

Abstract

It is a traditional but false notion that, in mammals, the yolk sac represents only a vestigial structure concerned with an early and fleeting period of hematopoiesis and protein synthesis. This notion is rapidly being dispelled though examination of the ultrastructural features of the yolk sac (Pinter et al. 1986a; Moore and Metcalf 1970). Furthermore, the inescapable prominence and structural complexity of the human yolk sac freely protruding into the exocelomic cavity at a time when the hemochorial placenta is still imperfectly constituted certainly defies the concept of a vestigial structure. The exocelomic cavity is destined to disappear as the amniotic cavity enlarges, but this process takes several months. In the meantime, the yolk sac may absorb products expelled into the exocelomic space. The rapid and total disappearance of the exocelomic fluid may be taken as an indication that the balance favors absorption over excretion. Additionally, demonstration of absorptive vesicles both in the mesothelial cells and endodermal cells of the human yolk sac strengthens the concept of the yolk sac having a functional role during normal and abnormal embryogenesis (Funaki and Mikamo 1983; Pedersen et al. 1964; Eriksson et al. 1983; Reece et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson ED (1982) The location and synthesis of transferrin in mouse embryos and teratocarcinoma cells. Dev Biol 91:227.

    Article  PubMed  CAS  Google Scholar 

  • Baker L, Egler JM, Klein SH, Goldman AS (1981) Meticulous control of diabetes during organogenesis prevents congenital lumbosacral defects in rats. Diabetes 30:955.

    PubMed  CAS  Google Scholar 

  • Beard RW, Lowy C (1982) Commentary: The British survey of diabetic pregnancies. Br J Obstet Gynaecol 89:783.

    Article  PubMed  CAS  Google Scholar 

  • Bloom W, Bartelmez GW (1940) Hemopoiesis in young human embryos. Am J Anat 67:21.

    Article  Google Scholar 

  • Brent RL, Johnson AJ, Jensen M (1971) The production of congenital malformations using tissue antisera, VII. Yolk-sac antiserum. Teratology 4:255.

    Article  PubMed  CAS  Google Scholar 

  • Brunschiqig AE (1972) Notes on experiments in placental permeability. Anat Rec 34:237.

    Article  Google Scholar 

  • Burnside MD, Jacobson AG (1968) Analysis of morphogenetic movements in the neuronal plate of the Newt Taricha torosa. Dev Biol 18:537.

    Article  PubMed  CAS  Google Scholar 

  • Cockroft DL, Coppola PT (1977) Teratogenic effects of excess glucose on head-fold rat embryos in culture. Teratology 16:141.

    Article  PubMed  CAS  Google Scholar 

  • Cockroft DL, Freinkel N, Phillips LS, Shambaugh GE (1981) Metabolic factors affecting organogenesis in diabetic pregnancy. Clin Res 29:577A (abstract).

    Google Scholar 

  • Edelman GM (1983) Cell adhesion molecules. Science 219:450.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson U, Dahlstrom E, Hellerstrom C (1983) Diabetes in pregnancy: skeletal malformations in the offspring of diabetic rats after intermittent withdrawal of insulin in early gestation. Diabetes 32:1141.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson VJ (1984) Congenital malformations in diabetic animal models — a Review. Diabetes Res 1:57.

    PubMed  CAS  Google Scholar 

  • Freeman SJ, Brent RL, Lloyd JB (1982) The effect of teratogenic antiserum on yolk-sac function in rat embryos cultured in vitro. J Embryol Exp Morph 71:63.

    PubMed  CAS  Google Scholar 

  • Funaki K, Mikamo K (1983) Developmental stage dependent teratogenic effects of maternal spontaneous diabetes in the Chinese hamster. Diabetes 32:637.

    Article  PubMed  CAS  Google Scholar 

  • Gitlin D, Boesman M (1967a) Fetus-specific serum proteins in several mammals and their relation to human alpha-fetoprotein. Biochem Physiol 32:327.

    Google Scholar 

  • Gitlin D, Boesman M (1967b) Sites of serum alpha-fetoprotein synthesis in the human and in the rat. J Clin Invest 46:1010.

    Article  PubMed  CAS  Google Scholar 

  • Goldman A, Dicker D, Feldberg D, Yeshaya A, Samuel N, Karp M (1986) Pregnancy outcome in patients with insulin-dependent diabetes mellitus with preconceptional diabetic control: a comparative study. Am J Obstet Gynecol 155:293.

    PubMed  CAS  Google Scholar 

  • Goldman AS, Baker L, Piddington R, Marx B, Herold R, Egler J (1985) Hyper-glycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid. Proc Natl Acad Sci USA 82:8227.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Crussi F (1979) The human yolk sac and yolk sac (endodermal sinus) tumors: a review. Perspect Pediatr Pathol 5:179.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Crussi F, Roth LM (1976) The human yolk sac and yolk sac carcinoma. Human Path 7:675.

    Article  CAS  Google Scholar 

  • Gupta M, Gulamhusein PA, Beck F (1982) Morphometric analysis of the visceral yolk sac endoderm in the rat in vivo and in vitro. J Reprod Fert 65:239.

    Article  CAS  Google Scholar 

  • Hesseldahl H, Falck-Larsen J (1969) Ultrastructure of humans yolk-sac endoderm, mesenchyme, tubules and mesothelium. Am J Anat 126:315.

    Article  PubMed  CAS  Google Scholar 

  • Hesseldahl H, Falck-Larsen J (1971) Hemopoiesis and blood vessels in human yolk sac. Acta Anat 78:274.

    Article  PubMed  CAS  Google Scholar 

  • Houtsmuller AJ (1982) Significance of linoleic acid in the metabolism and therapy of diabetes mellitus. World Rev Nutr Diet 39:85.

    PubMed  CAS  Google Scholar 

  • Kennedy L, Baynes JW (1984) Non-enzymatic glycosylation and the chronic complications of diabetes: an overview. Diabetologia 26:93.

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Kim YK, Naftolin F, Market CL (1987) Synthesis of stress protein during normal and stressed development of mouse embryos. In: McLachlan JA, Pratt RM, Market CL (eds) Developmental toxicology: mechanisms and risks. Cold Spring Harbor Laboratories, Cold Spring Harbor, pp 126-136 (Banbury report 26).

    Google Scholar 

  • Kinsell LW, Michaels GD, Walker G, Wheeler P, Splitter S, Flynn P (1959) Dietary linoleic acid and linoleate: Effects in diabetic and non-diabetic subjects with and without vascular disease. Diabetes 8:179.

    PubMed  CAS  Google Scholar 

  • Leung CCK, Watabe H, Brent RL (1977) The effect of heterologous antisera on embryonic development. Am J Anat 148:457.

    Article  PubMed  CAS  Google Scholar 

  • Lewitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial-cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815.

    Article  Google Scholar 

  • Lewitt P, Cooper ML, Rakic P (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase study. J Neurosci 1:27.

    Google Scholar 

  • Meek J, Adamson ED (1985) Transferrin in fetal and adult mouse tissues: synthesis, storage and secretion. J Embryol Exp Morphol 86:205.

    PubMed  CAS  Google Scholar 

  • Mills JL, Baker L, Goldman AS (1979) Malformations in infants of diabetic mothers occur before the seventh gestational week: implications for treatment. Diabetes 28:292.

    Article  PubMed  CAS  Google Scholar 

  • Moore AS, Metcalf D (1970) Ontogeny of the hemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18:279.

    Article  PubMed  CAS  Google Scholar 

  • Moore KL (1982) The developing human: clinically oriented embryology. Saunders, Philadelphia.

    Google Scholar 

  • Muglia L, Locker J (1984) Extrapancreatic insulin gene expression in the fetal rat. Proc Natl Acad Sci USA 81:3635.

    Article  PubMed  CAS  Google Scholar 

  • Naftolin F, Diamond M, Pinter E, Reece EA, Sanyal MK (1987) A hypothesis concerning the general basis of organogenetic congenital anomalies. Am J Obstet Gynecol 157:1.

    PubMed  CAS  Google Scholar 

  • New DAT (1978) Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol Rev 53:81.

    Article  PubMed  CAS  Google Scholar 

  • New DAT, Coppola PT, Cockroft DL (1976) Comparison of growth in vitro and in vivo of post-implantation rat embryos. J Embryol Exp Morphol 37:133.

    Google Scholar 

  • Padykula HA, Deren JJ, Wilson TH (1966) Development of structure and function in the mammalian yolk sac. I. Developmental morphology and vitamin B12 uptake of the rat yolk sac. Dev Biol 13:311.

    Article  PubMed  CAS  Google Scholar 

  • Payne GS, Deuchar EM (1972) An in vitro study of the function of embryonic membranes in the rat. J Embryol Exp Morph 27:533.

    PubMed  CAS  Google Scholar 

  • Pedersen LM, Typstrups I, Pedersen J (1964) Congenital malformations in newborn infants of diabetic women: correlation with maternal diabetic vascular complications. Lancet 1:1124.

    Article  PubMed  CAS  Google Scholar 

  • Pinter E, Reece EA (1988) Diabetes-associated congenital malformations: epidemiology, pathogenesis and experimental models of induction and prevention. In: Reece EA, Coustan DR (eds) Diabetes mellitus in pregnancy: principles and practice. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Pinter E, Reece EA, Leranth C et al. (1985) Malformations of the neural tube induced by hyperglycaemia: an ultrastructural analysis. Teratology 32:363.

    Article  PubMed  Google Scholar 

  • Pinter E, Reece EA, Leranth C, Garcia-Segura M, Sanyal MK, Hobbins JC, Mahoney MJ, Naftolin F (1986a) Arachidonic acid prevents hyperglycemia-associated yolk sac damage and embryopathy. Am J Obstet Gynecol 155:691.

    PubMed  CAS  Google Scholar 

  • Pinter E, Reece EA, Leranth C, Hobbins JC, Mahoney MJ, Naftolin F (1986b) Surface alterations of the embryonic blood cells and the visceral endodermal yolk sac layer under hyperglycemic conditions revealed by scanning electron microscopy. Proc Soc Perinatal Obstet (abstract) 25.

    Google Scholar 

  • Pinter E, Reece EA, Leranth C, Sanyal MK, Hobbins JC, Mahoney MJ, Naftolin F (1986c) Yolk sac failure in embryopathy due to hyperglycemia: ultrastructural analysis of yolk sac differentiation associated with embryopathy in rat conceptuses under hyperglycemic conditions. Teratology 33:73.

    Article  PubMed  CAS  Google Scholar 

  • Pinter E, Reece EA, Ogburn P, Leranth C, Hobbins JC, Mahoney MJ, Naftolin F (1986d) Arachidonic acid prevents hyperglycemia-induced embryopathy: modifications in polyunsaturated fatty acids provide clues for pathogenesis. Proc Soc Gynecol Invest (abstract) 36.

    Google Scholar 

  • Purves D, Lichtmann JW (1985) Principles of neural development. Sinauer, Sunderland, MA.

    Google Scholar 

  • Reece EA, Coustan DR (eds) (1988) Diabetes mellitus in pregnancy: principles and practice. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Reece EA, Hobbins JC (1986) Diabetic embryopathy: pathogenesis, prenatal diagnosis and prevention. Obstet Gynecol Survey 41:325–335.

    Article  CAS  Google Scholar 

  • Reece EA, Pinter EA, Leranth C, Sanyal MK, Hobbins JC, Mahoney MJ, Naftolin F (1985) Malformations of the neural tube induced by in vitro hyperglycemia: an ultrastructural analysis. Teratology 32:363.

    Article  PubMed  CAS  Google Scholar 

  • Reece EA, Pinter E, Leranth C, Garcia-Segura LM, Sanyal MK, Hobbins JC, Mahoney MJ, Naftolin F (1989) Yolk sac failure in embryopathy due to hyperglycemia: horseradish peroxidase uptake in the assessment of yolk sac dysfunction. Obstet Gynecol 74:755–762.

    PubMed  CAS  Google Scholar 

  • Sadler TW (1985) Langman’s medical embryology, 5th edn. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Sadler TW, Horton WE (1982) Whole embryo culture: a screening technique for teratogens? Teratogenesis Carcinog Mutagen 2:243.

    Article  PubMed  CAS  Google Scholar 

  • Sanyal MK, Naftolin F (1979) Oxygen requirement for in vitro growth and differentiation of the rat conceptus during organogenesis phase of embryo development. Bio Reprod 20:639.

    Article  CAS  Google Scholar 

  • Slauson DO, Cooper BJ (1982) Mechanisms of disease: a textbook of comparative general pathology. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Streeter GL (1942) Developmental horizons in human embryos: description of age group XIII, embryos about 4 or 5 millimeters long, and age group XIV, period of indentation of the lens vesicle. Carnegie Inst Wash Publ 557 31:29.

    Google Scholar 

  • Warner CW, Sadler TW, Shockey J, Smith MK (1983) A comparison of the m vivo and in vitro response of mammalian embryos to a teratogenic insult. Toxicology 28:271.

    Article  PubMed  CAS  Google Scholar 

  • Weibel RE (1969) Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol 26:235.

    Article  PubMed  CAS  Google Scholar 

  • Witschi E (1972) Development: prenatal vertebrate development: rat. In: Altman FL, Dittmer DS (eds) Growth, biological handbooks. Federation of American Societies for Experimental Biology, Washington, DC, p 3

    Google Scholar 

  • Ziversmit DB (1973) A proposal linking atherogenesis to the interaction of endothelial lipoprotein lipase with triglyceride-rich lipoprotein. Circ Res 33:633.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reece, E.A., Pinter, E., Naftolin, F. (1993). Experimental Models of Injury in the Mammalian Yolk Sac. In: Nogales, F.F. (eds) The Human Yolk Sac and Yolk Sac Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77852-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77852-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77854-4

  • Online ISBN: 978-3-642-77852-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics