Skip to main content

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 15))

  • 136 Accesses

Abstract

In this chapter we deal with data compression using methods beyond the optimized sampling and quantization techniques discussed in Chap. 4. After a brief introduction to statistical methods orginally due to Shannon, the special but important case of graphical (two-level) images is presented in some detail, culminating with a treatment of the international standard CCITT system. Continuous-tone coding methods, with emphasis on still monochrome images, are then presented. Emphasis is placed on the importance of using perceptual ideas in the design and analysis of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A. Wintz: “Transform Picture Coding,” Proc. IEEE 60 (7), 809–820 (1972); see also A.G. Tescher’s article on transform coding in W.K. Pratt (ed.): Image Transmission Techniques (McGraw-Hill, New York 1979

    Article  Google Scholar 

  2. J.O. Limb, C.R. Rubinstein, J.E. Thompson: “Digital Coding of Color Video Signals — A Review,” IEEE Trans. COM-25 (11), 1349–1385 (1977)

    Article  Google Scholar 

  3. R.R. Buckley: “Digital Color Image Coding and the Geometry of Color Space,” Ph.D. Thesis, Massachusetts Institute of Technology, Electrical Engineering and Computer Science Department (1982)

    Google Scholar 

  4. A.N. Netravali, J.D. Robbins: “Motion-Compensated TV Coding”, Bell System Tech. J. 58 (3), 631–670 (1979)

    MATH  Google Scholar 

  5. W.F. Schreiben “Color Reproduction System,” US Patent No. 4,500,919 (1985)

    Google Scholar 

  6. W.-H. Chen, W.K. Pratt: “Scene Adaptive Coder,” IEEE Trans. COM-32 (3), 225–232 (1984)

    Article  Google Scholar 

  7. C.E. Shannon, W. Weaver The Mathematical Theory of Communication (University of Illinois Press, Urbana 1949). Everyone interested in statistical coding should read Shannon’s landmark paper.

    MATH  Google Scholar 

  8. D.A. Huffman: “A Method for the Construction of Minimum Redundancy Codes,” Proc. IRE 40 (9), 1098–1101 (1952)

    Article  Google Scholar 

  9. W.F. Schreiben “The Measurement of Third Order Probability Distribution of TV Signals,” IRE Trans. IT-2 (9), 94–105 (1956)

    Google Scholar 

  10. S. Ericsson, E. Dubois: “Digital Coding of High Quality TV,” Paper 3.5, High Definition Television Colloquium, Canadian Dept. of Communications, Ottawa (1985)

    Google Scholar 

  11. D. Bodson, S. Urban, A. Deutermann, C. Clarke: “Measurement of Data Compression in Advanced Group IV Facsimile Systems,” Proc. IEEE 73 (4), 731–739 (1985)

    Article  Google Scholar 

  12. W.F. Schreiber. “Reproduction of Graphical Data by Facsimile,” Quarterly Progress Report, Research Laboratory of Electronics, Massachusetts Institute of Technology, No. 84 (1967); R.B. Arps, R.L. Erdmann, A.S. Neal, CE. Schlaepfer: “CharacterLegibility Versus Resolution in Image Processing of Printed Matter,” IEEE Trans. MMS-10 (3), 66–71 (1969)

    Google Scholar 

  13. R.N. Ascher, G. Nagy: “A Means for Achieving a High Degree of Compaction on Scan Digitized Printed Test,” IEEE Trans. C-23 (11), 1174–1179 (1974)

    Google Scholar 

  14. W.K. Pratt, P. Capitani, W. Chen, E. Hamilton, R. Wallis: “Combined Symbol Matching Facsimile Data Compression System,” Proc. IEEE 68 (7), 786–795 (1980)

    Article  Google Scholar 

  15. D.R. Knudson: US Patent No. 4,281,312 (1981)

    Google Scholar 

  16. S.W. Golomb: “Run Length Encodings,” IEEE Trans. IT-15 (7), 399–400 (1969)

    Google Scholar 

  17. J. Capon: “A Probabilistic Model for Run-Length Coding of Pictures,” IRE Trans. IT-5 (12), 157–163 (1959)

    MathSciNet  Google Scholar 

  18. C.G. Beaudette: “An Efficient Facsimile System for Weather Graphics,” in Proceedings of Symposium on Picture Bandwidth Compression, MIT, ed. by T.S. Huang, O.J. Tretiak (MIT Press, Cambridge, MA 1969) pp. 217–229

    Google Scholar 

  19. H.G. Mussman, D. Preuss: “Comparison of Redundancy Reducing Codes for Facsimile Transmission of Documents,” IEEE Trans. COM-25 (11), 1425–1433 (1977)

    Article  Google Scholar 

  20. T.S. Huang, A.B.S. Hussain: “Facsimile Coding by Skipping White,” IEEE Trans. COM-23 (12), 1452–1460 (1975)

    Article  Google Scholar 

  21. T.S. Huang: “Bounds on the Bit Rate of Linear Run-Length Codes,” IEEE Trans. IT-21 (11), 707–708 (1975)

    Google Scholar 

  22. R.B. Arps: “An Introduction and Digital Facsimile Review,” in Proc. Int. Conf. on Communications Vol. 1 (San Francisco 1975) p. 7. A number of other interesting papers are included in this issue

    Google Scholar 

  23. Kalle Infotec U.K. Ltd.: “Redundancy Reduction Technique for Fast Black and White Facsimile Apparatus,” CCITT Study Group XTV, Temp. Document No. 15 (1975)

    Google Scholar 

  24. R.B. Arps: “Bibliography of Digital Graphic Image Compression and Quality,” IEEE Trans. IT-20 (1), 120–122 (1974)

    Google Scholar 

  25. M.W. Baldwin: “The Subjective Sharpness of Simulated TV Pictures,” Proc. IRE 28 (10), 458–468 (1940)

    Article  Google Scholar 

  26. T.S. Huang: “Run Length Coding and its Extensions,” Proceedings of Symposium on Picture Bandwidth Compression, MIT, ed. by T.S. Huang, O.J. Tretiak (MIT Press, Cambridge, MA 1969) pp. 231–264

    Google Scholar 

  27. F. DeCoulon, M. Kunt: “An Alternative to Run Length Coding for Black and White Fascimile,” in Proceedings of TREE InternationalZurich Seminar on Digital Communication, Paper C-4 (1974)

    Google Scholar 

  28. F. DeCoulon, O. Johnsen: “Adaptive Block Scheme for Source Coding of Black and White Facsimile,” Electron. Lett. 12 (3), 61 (1976)

    Article  Google Scholar 

  29. R.M. Gray: “Vector Quantization,” IEEE ASSP Mag. 4–29 (April 1984)

    Google Scholar 

  30. W.F. Schreiber, T.S. Huang, O.J. Tretiak: “Contour Coding of Images,” Wescon Technical Papers, paper 8/3, IEEE (1968); also in Picture Bandwidth Compression (Gordon Breach, New York 1972); and in N.S. Jayant (ed.): Waveform Quantization and Coding (IEEE, New York 1976)

    Google Scholar 

  31. D. Gabor, P.C.J. Hill: “Television Band Compression by Contour Interpolation,” Proc. IEE (England) 108, Part B, 303–315 (1961)

    Google Scholar 

  32. T.H. Motrin: “Recursive Contour Coding of Nested Objects in Black/White Images,” in Proc. Int. Conf. on Communications, Vol. 1 (San Francisco, 1975) pp. 7–17

    Google Scholar 

  33. P.M J. Coueignoux: “Compression of Type Faces by Contour Coding,” M.S. Thesis, Massachusetts Institute of Technology, Electrical Engineering and Computer Science Department (1973)

    Google Scholar 

  34. D.N. Graham: “Image Transmission by Two-Dimensional Contour Coding,” Ph.D. Thesis, Massachusetts Institute of Technology, ElectricalEngineeringDepartment (1966); also Proc. IEEE 55 (3), 336–346 (1967)

    Google Scholar 

  35. J.W. Pan: “Reduction of Information Redundancy,” Sc.D. Thesis, Massachusetts Institute of Technology, Electrical Engineering Department (1963)

    Google Scholar 

  36. H.S. Hou, H.C. Andrews: “Cubic Splines for Image Interpolation and Digital Filtering,” IEEE Trans. ASSP-26 (4), 508 (1978)

    Google Scholar 

  37. R. Hunter, A.H. Robinson: “International Digital Facsimile Coding Standards,” Proc. IEEE 68 (7), 854–867 (1980)

    Article  Google Scholar 

  38. J.R. Ellis: Ph.D. Thesis, Massachusetts Institute of Technology, Electrical Engineering and Computer Science Department (1977)

    Google Scholar 

  39. D. Spencer: M.S. Thesis, Massachusetts Institute of Technology, Electrical Engineering and Computer Science Department (1968)

    Google Scholar 

  40. H. Freeman: “On the Encoding of Arbitrary Geometrical Figures,” IRE Trans. EC-10, 260–268 (1961)

    MathSciNet  Google Scholar 

  41. I.T. Young: “TV Bandwidth Compression Using Area Properties,” MS Thesis, Massachusetts Institute of Technology, Electrical Engineering Department (1966)

    Google Scholar 

  42. P. Elias: “Predictive Coding,” IRE Trans. IT-1 (3), 16–32 (1955)

    Google Scholar 

  43. R.E. Graham: “Predictive Quantization of TV Signals,” Wescon Conv. Record 2 (4), 147–157, IRE (1958)

    Google Scholar 

  44. W. Zschunke: “DPCM Picture Coding with Adaptive Prediction,” IEEE Trans. COM-25 (11), 1295–1302 (1977)

    Article  Google Scholar 

  45. C.M. Harrison: “Experiments with Linear Prediction in TV,” Bell System Tech. J. 31, 764–783 (1952)

    Google Scholar 

  46. L.D. Davisson: “Data Compression Using Straight-Line Interpolation,” IEEE Trans. IT-14 (3), 390–394 (1968)

    Google Scholar 

  47. A.N. Netravali: “Interpolative Picture Coding Using a Subjective Criterion,” IEEE Trans. COM-25 (5), 503–508 (1977)

    Article  Google Scholar 

  48. C.C. Cutler: US Patent No.2,605,361 (1952)

    Google Scholar 

  49. J.B. O’Neal: “Predictive Quantizing System (DPCM) for the Transmission of TV Signals,” Bell System Tech. J. 45, 689–721 (1966)

    Google Scholar 

  50. J. de Jaeger: “Deltamodulation, a Method of PCM Transmission Using a 1-bit Code,” Philips Res. Rep. 7 (6), 442–466 (1952)

    Google Scholar 

  51. J. Max: “Quantizing for Minimum Distortion,” IRE Trans. IT-6 (3), 7–12 (1960)

    MathSciNet  Google Scholar 

  52. A.N. Netravali: “On Quantizers for DPCM Coding of TV Signals,” IEEE Trans. IT-23 (3), 360–370 (1977)

    Google Scholar 

  53. T. Bergen “Optimum Quantizers and Permutation Codes,” IEEE Trans. IT-18 (11), 759–776 (1972)

    Google Scholar 

  54. H.G. Mussman: “Predictive Coding of TV Signals,” in Image Transmission Techniques, ed. by W. Pratt (Academic, New York 1979)

    Google Scholar 

  55. D.K. Sharma, A.N. Netravali: “Design of Quantizers for DPCM Coding of Picture Signals,” IEEE Trans. COM-25 (11), 1267–1274 (1978)

    Google Scholar 

  56. B. Prasada: Private communication

    Google Scholar 

  57. A. Habibi: “Comparison of nth Order DPCM Encoder with Linear Transformations and Block Quantization Techniques,” IEEE Trans. COM-19 (6), 948–956 (1971)

    Article  Google Scholar 

  58. D.J. Connor, R.F.W. Pease, W.G. Scholes: “TV Coding Using Two-Dimensional SpatialPrediction,” Bell System Tech. J. 50, 1049–1061 (1971)

    Google Scholar 

  59. P.A. Ratliff: “Digital Coding of the Composite PAL Colour Television System for Transmission at 34 Mbits/sec,” BBC Eng. No. 115, 24–35 (1980)

    Google Scholar 

  60. A. Habibi: “Survey of Adaptive Image Coding Techniques,” IEEE Trans. COM-25 (11), 1257–1284 (1977)

    Google Scholar 

  61. B. Prasada, A. Netravali: “Adaptive Companding of Picture Signals in a Predictive Coder,” IEEE Trans. COM-26 (1), 161–164 (1978)

    Article  Google Scholar 

  62. N.S. Jayant: “Adaptive Quantization with a One-Word Memory,” Bell System Tech. J. 52, 1119–1143 (1973)

    Google Scholar 

  63. A.P. Zarembowitch: “Forward Estimation Adaptive DPCM for Image Data Compression,” M.S. Thesis, Massachusetts Institute of Technology, Electrical Engineering and Computer Science Department (1981)

    Google Scholar 

  64. C.C. Cutler: “Delayed Encoding: Stabilizer for Adaptive Coders,” IEEE Trans. COM-19 (6), 898–907 (1971)

    Article  Google Scholar 

  65. A.N. Netravali, B. Prasada: “Adaptive Quantization of Picture Signals Using Spatial Masking,” Proc. IEEE 65 (4), 536–548 (1977)

    Article  Google Scholar 

  66. S.K. Goyal, J.B. O’Neal: “Entropy Coded DPCM systems for TV,” IEEE Trans. COM-23 (6), 660–666 (1975)

    Article  Google Scholar 

  67. E.G. Kimme, F.F. Kuo: “Synthesisof Optimum Filters for a FeedbackQuantizationScheme,” IEEE Trans. CT-10 (9), 405–413 (1963)

    Google Scholar 

  68. W.F. Schreiber, D.E. Troxel: US Patent No. 4,268,861 (1981)

    Google Scholar 

  69. D.E. Troxel: “Application of Pseudorandom Noise to DPCM,” IEEE Trans. COM-29 (12), 1763–1167 (1981)

    Article  Google Scholar 

  70. E.R. Kretzmer: “Reduced Alphabet Representation of Television Signals,” IRE Nat. Conv. Ree. 4 (4), 140–153 (1956)

    Google Scholar 

  71. W.F. Schreiber, C.F. Knapp, N.D. Kay: “Synthetic Highs, An Experimental TV Bandwidth Reduction System,” J. Soc. Motion Picture Television Eng. 68 (8), 525–537 (1959)

    Google Scholar 

  72. D.N. Graham, “Image Transmission by Two Dimensional Contour Coding,” Proc. IEEE 55 (3), 336–346 (1967)

    Article  Google Scholar 

  73. D.E. Troxel, W. Schreiber, P. Curlander, A. Gilkes, R. Grass, G. Hoover: “Image Enhancement/Coding Systems Using Pseudorandom Noise Processing,” Proc. IEEE 67, 972–973 (1979)

    Article  ADS  Google Scholar 

  74. D.E. Troxel, W.F. Schreiber, R. Grass, G. Hoover, R. Sharpe: “Bandwidth Compression of High Quality Images,” International Conference on Communications, 31.9.1–5, Seattle (1980); also “A Two-Channel Picture Coding System: I — Real-Time Implementation,” IEEE Trans. COM-29 (12), 1841–1848 (1981)

    Google Scholar 

  75. W.F. Schreiber, R.R. Buckley: “A Two-Channel Picture Coding System: II — Adaptive Companding and Color Coding,” IEEE Trans. COM-29 (12), 1849–1858 (1981)

    Article  Google Scholar 

  76. R.B. Sharpe: “StatisticalCoding of the Highs Channel of a Two-Channel Facsimile System,” M.S. Thesis, Massachusetts Institute of Technology, Electrical Engineering and Computer Science Department (1979)

    Google Scholar 

  77. M. Kocher, M. Kunt: “A Contour-Texture Approach to Picture Coding,” in Proc. ICASSP-2, Paris (IEEE, New York 1982) pp. 436–440

    Google Scholar 

  78. P.J. Burt, E.H. Adelson: “The Laplacian Pyramid as a Compact Image Code,” IEEE Trans. COM-31 (4), 532–540 (1983)

    Article  Google Scholar 

  79. J. Alnatt: Transmitted-picture Assessment (Wiley, New York 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schreiber, W.F. (1993). Compression. In: Fundamentals of Electronic Imaging Systems. Springer Series in Information Sciences, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77847-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77847-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56018-0

  • Online ISBN: 978-3-642-77847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics