Molekulargenetische Ansätze zur Optimierung der zellvermittelten Immuntherapie

  • G. Mickisch
Conference paper

Zusammenfassung

Immuntherapeutische Verfahren in der Krebsbehandlung weisen häufig eine befriedigende Spezifität auf, während die damit bewirkte Tumorzellabtötung oft nicht ausreichend erscheint. Ansätze, die zielgerichtete Aggressivität dieser Therapie zu steigern, besitzen daher eine hohe Priorität in der aktuellen Krebsforschung.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. DeVita S, Hellman S, Rosenberg SA (eds) (1991) Biologic therapy of cancer. Lippincott, Philadelphia, PAGoogle Scholar
  2. FitzGerald D, Pastan I (1989) Targeted toxin therapy for the treatment of cancer. J Natl Cancer Inst 81: 1455–1463PubMedCrossRefGoogle Scholar
  3. Gottesman MM, Pastan I (1988) The multidrug transporter: a double-edged sword. J Biol Chem 263: 12163–12166PubMedGoogle Scholar
  4. Kane SE, Pastan I, Gottesman MM (1990) Genetic basis of multidrug resistance of tumor cells. J Bioenerg Biomembr 22: 593–618PubMedCrossRefGoogle Scholar
  5. Mickisch GH, Röhrig K, Kössig J, Forster S, Tschada RK, Alken PM (1990) Mechanisms and modulation of multidrug resistance in primary human renal cell carcinoma. J Urol 144: 755–759PubMedGoogle Scholar
  6. Mickisch GH, Merlino GT, Galski H, Gottesman MM, Pastan I (1991) Transgenic mice that express the human multidrug resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. Proc Natl Acad Sci USA 88: 547–551PubMedCrossRefGoogle Scholar
  7. Mickisch GH, Pai LH, Gottesman MM, Pastan I (1992) Monoclonal antibody MRK16 reverses the multidrug resistance of MDR-transgenic mice. Cancer Res 52: 4427–4432PubMedGoogle Scholar
  8. Mickisch GH, Pai LH, Siegsmund M, Campain J, Gottesman MM, Pastan I (1993) Pseudomonas exotoxin conjugated to monoclonal antibody MRK16 specifically kills multidrug resistant cells in cultured renal carcinomas and in MDR-transgenic mice. J Urol 149: 174–178PubMedGoogle Scholar
  9. Olsnes S, Sandvig K (1988) How protein toxins enter and kill cells. In: Frankel AE (ed) Immunotoxins. Kluver, Norwell, MA, pp 39–73CrossRefGoogle Scholar
  10. Pastan I, Gottesman MM (1987) Multiple drug resistance in human cancer. N Engl J Med 316: 1388–1393PubMedCrossRefGoogle Scholar
  11. Pastan I, FitzGerald D (1991) Recombinant toxins for cancer treatment. Science 254: 1173–1177PubMedCrossRefGoogle Scholar
  12. Pastan I, Chaudhary V, FitzGerald DJ (1993) Recombinant toxins as novel therapeutic agents. Annu Rev Biochem (in press)Google Scholar
  13. Rosenberg SA (1991) Immunotherapy and gene therapy of cancer. Cancer Res 51 [Suppl]: 5074s–5079sPubMedGoogle Scholar
  14. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 223: 1218–1321Google Scholar
  15. Rosenberg SA, Packard BS, Aebersold PM et al. (1988) Immunotherapy of patients with metastatic melanoma using tumor infiltrating lymphocytes and interleukin-2: preliminary report. N Engl J Med 319: 1676–1680PubMedCrossRefGoogle Scholar
  16. Rosenberg SA, Aebersold PM, Cornetta K et al. (1990) Gene transfer into humans: immunotherapy of patients with advanced melanoma using tumor-infiltrating lymphocytes modified by retrieval gene transduction. N Engl J Med 323: 579–578CrossRefGoogle Scholar
  17. Sugawara I, Kataoka I, Morishita Y, Hamada H, Tsuruo T, Itoyama S, Mori S (1988) Tissue distribution of P-glycoprotein encoded by a multidrug resistance gene as revealed by a monoclonal antibody, MRK16. Cancer Res 48: 1926–1929PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. Mickisch

There are no affiliations available

Personalised recommendations