Skip to main content

Genetische Schritte in Zusammenhang mit der Entstehung des Prostatakarzinoms

  • Conference paper
Immuntherapie in der Uroonkologie

Zusammenfassung

Das Prostatakarzinom stellt in zunehmendem Maße ein medizinisches Problem dar: Es ist der gegenwärtig am häufigsten diagnostizierte Krebs bei der westlichen männlichen Bevölkerung und die zweithäufigste Krebstodesursache bei Männern (Boring et al. 1991) Trotz der wachsenden Patientenanzahl mit klinisch manifester Erkrankung ist über die Mechanismen, die am Beginn und der Progredienz des Prostatakrebses beteiligt sind, nur wenig bekannt. Es scheint jedoch klar zu sein, daß die Prostatakarzinogenese ein aus zahlreichen Schritten bestehender Prozeß ist, der zuerst zu histologischen Prostatakarzinomen führt, und sich nach dem Stattfinden zusätzlicher maligner Ereignisse zur klinischen Krankheit entwickelt (Carter et al. 1990). Während der Phänotyp des Tumors vom benignen zum malignen und möglicherweise metastatischen Zustand wechselt, treten gehäuft genetische Veränderungen, sowohl in qualitativer als auch quantitativer Hinsicht, auf (Nicolson 1991). Die Targetzelle entwickelt dadurch oftmals die Fähigkeit zur Umgehung von Kontrollen, was zu unbegrenzter Proliferationsbereitschaft führt. Die erhöhte Proliferationsfähigkeit hat 2 wichtige Konsequenzen. Erstens ist infolge der Tatsache, daß die am stärksten gentoxischen Agenzien die Gene in Zykluszellen schädigen, die Gefahr größer, daß Genschäden erworben werden. Die erhöhte Proliferationsfähigkeit ist darüber hinaus für das Auswachsen der malignen Zellpopulation erforderlich.

Übersetzung aus dem Engl, von Belinde Junkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almendral J M, Sommer D, MacDonald-Bravo H, Burckhardt J, Perera J, Bravo R (1988) Complexity of the early genetic response to growth factors in mouse fibroblasts. Molecul Cell Biol 8: 2140–2148

    CAS  Google Scholar 

  • Atkin N B, Baker M C (1985a) Chromosome 10 deletion in carcinoma of the prostate. New Engl J Med 312: 315

    PubMed  CAS  Google Scholar 

  • Atkin N B, Baker M C (1985b) Chromosome study of five cancers of the prostate. Hum Genet 70: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Augentlicht L H, Kobrin D (1982) Cloning and screening of sequences expressed in a mouse colon tumor. Cancer Res 42: 1088–1093

    Google Scholar 

  • Baker S J, Fearon E R, Nigro J M et al.(1989) Chromosome 17 deletions and p53 mutations in colorectal carcinomas. Science 244: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Beckett M L, Lipford G B, Haley C L, Schellhammer P F, Wright Jr. G L (1991) Monoclonal antibody PD41 recognizes an antigen restricted to prostate adenocarcinomas. Cancer Res 51: 1326–1333

    PubMed  CAS  Google Scholar 

  • Bookstein R, Shew J-Y, Chen P-L, Scully P, Lee W-H (1990) Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247: 712–715

    Article  PubMed  CAS  Google Scholar 

  • Boring C C, Squires T S, Tong T (1991) Cancer statistics, 1991. CA-A Cancer J Clini 41: 19–36

    Article  CAS  Google Scholar 

  • B0rresen A-L, Hovig E, Smith-S0rensen B et al. (1991) Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc Natl Acad Sci USA 88: 8405–8409

    Article  PubMed  Google Scholar 

  • Brothman A R, Peehl D M, Patel A M, McNeal J E (1990) Frequency and pattern of karyotypic abnormalities in human prostate cancer. Cancer Res 50: 3795–3803

    PubMed  CAS  Google Scholar 

  • Bussemakers M J G, Isaacs J T, Debruyne F M J, Van De Ven W J M, Schalken J A (1991 a) Oncogene expression in prostate cancer. World J Urol 9: 58–63

    Article  Google Scholar 

  • Bussemakers M J G, Van de Ven W J M, Debruyne F M J, Schalken J A (1991b) Identification of high mobility group protein I (Y) as a potential marker for prostate cancer by differential hybridization analysis. Cancer Res 51: 606–611

    PubMed  CAS  Google Scholar 

  • Bussemakers M J G, Van Moorselaar R J A, Giroldi L A et al. (1991c) Decreased expression of E-cadherin in rat prostate cancer cells. (Submitted)

    Google Scholar 

  • Buttyan R, Sawczuk IS, Benson M C, Siegal J D, Olsson C A (1987) Enhanced expression of the c-myc protooncogene in high-grade human prostate cancers. Prostate 11: 327–337

    Article  PubMed  CAS  Google Scholar 

  • Buttyan R, Zakeri Z, Lockshin R, Wolgemuth D (1988) Cascade induction c-fos, c-myc, and heat- shock 70 K transcripts during regression of the rat ventral prostate. Mol Endocrinol 2: 650–657

    Article  PubMed  CAS  Google Scholar 

  • Carter B S, Epstein J I, Isaacs W B (1990a) Ras gene mutations in human prostate cancer. Cancer Res 50: 6830–6832

    PubMed  CAS  Google Scholar 

  • Carter B S, Ewing C M, Ward W S et al. (1990b) Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 87: 8751–8755

    Article  PubMed  CAS  Google Scholar 

  • Carter H B, Piantadosi S, Isaacs J T (1990) Clinical evidence for and implications of the multistep development of prostate cancer. J Urol 143: 742–746

    PubMed  CAS  Google Scholar 

  • Chung L W K, Chang S-M, Bell C, Zhau H E, Ro J Y, Von Eschenbach A C (1989) Co-inoculation of tumorigenic rat prostate mesenchymal cells with non-tumorigenic epithelial cells results in the development of carcinosarcoma in syngeneic and athymic animals. Int J Cancer 43: 1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Coates P J, DArdenne A J, Khan G, Kangro H O, Slavin G (1991) Simplified procedures for applying the polymerase chain reaction to routinely fixed paraffin wax sections. J Clin Pathol 44:115–118

    Article  PubMed  CAS  Google Scholar 

  • Coffey D S, Williams-Ashman H G (1968) Polymerization of deoxyribonucleotides in relation to androgen-induced prostate growth. Arch Biochem Biophys 124: 184–198

    Article  PubMed  CAS  Google Scholar 

  • Cooke D B, Quarmby V E, Mickey D D, Isaacs J T, French F S (1988a) Oncogene expression in prostate cancer: Dunning R-3327 rat dorsal prostatic adenocarcinoma system. Prostate 13: 263–272

    Article  PubMed  CAS  Google Scholar 

  • Cooke D B, Quarmby V E, Petrusz P, Mickey D D, Der C J, Isaacs J T, French F S (1988b) Expression of rasproto-oncogenes in the Dunning R-3327 rat prostatic adenocarcinoma system. Prostate 13: 273–288

    Article  PubMed  CAS  Google Scholar 

  • Cunha G R, Chung L W K, Shannon J M, Taguchi O, Fujii H (1983) Hormone-induced morphogenesis and growth: role of mesenchymal-epithelial interactions. Rec Prog Horm Res 39: 559–598

    PubMed  CAS  Google Scholar 

  • Dear T N, Ramshaw I A, Kefford R F (1988) Differential expression of a novel gene, WDNM1, in nonmetastatic rat mammary adenocarcinoma cells. Cancer Res 48: 5203–5209

    PubMed  CAS  Google Scholar 

  • Dear T N, McDonald D A, Kefford R F (1989) Transcriptional down-regulation of a rat gene, WDNM2, in metastatic DMBA-8 cells. Cancer Res 49: 5323–5328

    PubMed  CAS  Google Scholar 

  • Djakiew D, Tarkington M A, Lynch J H (1990) Paracrine stimulation of polarized secretion from monolayers of a neoplastic prostatic epithelial cell line by prostatic stromal cell proteins. Cancer Res 50: 1966–1974

    PubMed  CAS  Google Scholar 

  • Erhlich H A (1989) PCR technology; principles and applications for DNA amplification. Stockton, New York

    Google Scholar 

  • Fearon E R, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    Article  PubMed  CAS  Google Scholar 

  • Fearon E R, Cho K R, Nigro J M et al. (1990) Identification of a chromosome 18q gene that is altered in colorectal carcinomas. Science 247: 49–56

    Article  PubMed  CAS  Google Scholar 

  • Fleming W H, Hamel A, MacDonald R et al. (1986) Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res 46: 1535–1538

    PubMed  CAS  Google Scholar 

  • Freeman M R, Song Y, Carson D D, Guthrie P D, Chung L W K (1991) Extracellular matrix and androgen receptor expression associated with spontaneous transformation of rat prostate fibroblasts. Cancer Res 51: 1910–1916

    PubMed  CAS  Google Scholar 

  • Hart I R, Goode N T, Wilson R E (1989) Molecular aspects of the metastatic cascade. Biochim Biophys Acta 989: 65–84

    PubMed  CAS  Google Scholar 

  • Hopman A H N, Ramaekers F C S, Raap A K, Beck J L M, Devilee P, Van der Ploeg, M, Vooijs G P (1988) In situ Hybridization as a tool to study numerical chromosomal aberrations in solid bladder tumors. Histochemistry 89: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Hopman A H N, Moesker O, Smeets AW C B, Pauwels R P E, Vooijs G P, Ramaekers F C S (1991) Numerical chromosome 1,7,9 and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res 51: 644–651

    PubMed  CAS  Google Scholar 

  • Huang C-C, Wu C-H, Abramson M (1979) Collagenase activity in cultures of rat prostate carcinoma. Biochim Biophys Acta 570: 149–156

    PubMed  CAS  Google Scholar 

  • Gaylis F D, Keer H N, Wilson M J, Kwaan H C, Sinha A A, Kozlowski J M (1989) Plaminogen activators in human prostate cancer cell lines and tumors: correlation with the aggressive phenotype. J Urol 142: 193–198

    PubMed  CAS  Google Scholar 

  • Gumerlock P H, Poonamallee U R, Meyers F J, DeVere White R W (1991) Activated ras alleles in human carcinoma of the prostate are rare. Cancer Res 51: 1632–1637

    PubMed  CAS  Google Scholar 

  • Isaacs W B, Carter B S, Ewing C M (1991) Wild type p53 suppresses growth of human cancer cells containing mutant p53 alleles. Cancer Res 51: 4716–4720

    PubMed  CAS  Google Scholar 

  • Johnson K R, Lehn D A, Elton T S, Barr P J, Reeves R (1988) Complete murine cDNA sequence, genomic structure, and tissue expression of the high mobility group protein HMG-I(Y), J Biol Chem 263: 18338–18342

    PubMed  CAS  Google Scholar 

  • Katz A E, Benson M C, Wise G J et al. (1989) Gene activity during the early phase of androgen-stimulated rat prostate regrowth. Cancer Res 49: 5889–5894

    PubMed  CAS  Google Scholar 

  • Kohler G, Milstein G (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 265: 493–495

    Google Scholar 

  • Kyprianou N, Isaacs J T (1988) Identification of a cellular receptor for transforming growth factor-β in rat ventral prostate and its negative regulation by androgens. Endocrinology 123: 2124–2131

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, Isaacs J T (1989) Expression of transforming growth factor-β in the rat ventral prostate during castration-induced programmed cell death. Mol Endocrinol 3: 1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Lau L F, Nathans D (1985) Identification of a set of genes expressed during G0/G1 transition of cultured mouse cells. EMBO J 4: 3145–3151

    PubMed  CAS  Google Scholar 

  • Lau L F, Nathans D (1987) Expression of a set of growth-related immediate early genes in Balb/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natal Acad Sci USA 84: 1182–1186

    Article  CAS  Google Scholar 

  • Lindgren J, Pak K Y, Ernst C, Rovera G, Steplewski Z, Koprowski H (1985) Shared antigens of human prostate cancer cell lines as defined by monoclonal antibodies. Hybridoma 4: 37–45

    Article  PubMed  CAS  Google Scholar 

  • Lipford G B, Wright Jr G L (1991) Comparative study of monoclonal antibodies TURP-27 and HNK-1: their relationship to neural cell adhesion molecules and prostate tumor-associated antigens. Cancer Res 51: 2296–2301

    PubMed  CAS  Google Scholar 

  • Liu A Y, Abraham B A (1991) Subtractive cloning of a hybrid human endogenous retrovirus and calbindin gene in the prostate cell line PC3. Cancer Res 51: 4107–4110

    PubMed  CAS  Google Scholar 

  • Lowe F C, Isaacs J T (1984) Biochemical methods for predicting metastatic ability of prostatic cancer utilizing the Dunning R-3327 rat prostatic adenocarcinoma system as a model. Cancer Res 44: 744–752

    PubMed  CAS  Google Scholar 

  • Matrisian L M, Bowden G T, Krieg P, Fürstenberger G, Briand J-P, Leroy P, Breatnach R (1986) The mRNA coding for the secreted protease transin is expressed more abundantly in malignant than in benign tumors. Proc Natl Acad Sci USA 83: 9413–9417

    Article  PubMed  CAS  Google Scholar 

  • McKeehan W L, Adams P S, Fast D (1987) Different hormonal requirements for androgen-independent growth of normal and tumor epithelial cells from rat prostate. In Vitro Cell Develop Biol 23: 147–152

    Article  CAS  Google Scholar 

  • Meyers R M, Maniatis T, Lerman L S (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Meth Enzymol 155: 501–527

    Article  Google Scholar 

  • Mori H, Maki M, Oishi K, Jaye M, Igarashi K, Yoshida O, Hatanaka M (1990) Increased expression of genes for basic fibroblast growth factor and transforming growthfactor type β-2 in human benign prostatic hyperplasia. Prostate 16: 71–80

    Article  PubMed  CAS  Google Scholar 

  • Morris G L, Dodd J G (1990) Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines. J Urol 143: 1272–1274

    PubMed  CAS  Google Scholar 

  • Myrdal S E, Twardzik D R, Auersperg N (1986) Cell-mediated co-action of transforming growth factors: incubation of type β with normal rat kidney cells produces a soluble activity that prolongs the ruffling response to type a. J Cell Biol 102: 1230–1234

    Article  PubMed  CAS  Google Scholar 

  • Nicolson G L (1991) Quantitative variations in gene expression: possible role in cellular diversification and tumor progression. J Cell Biochemi 46: 277–283

    Article  CAS  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874–879

    Article  PubMed  CAS  Google Scholar 

  • Peehl D M, Wehner N, Stamey T A (1987) Activated Ki-ras oncogene in human prostatic adenocarcinoma. Prostate 10: 281–289

    Article  PubMed  CAS  Google Scholar 

  • Perkel V S, Mohan S, Herring S J, Baylink D J, Linkhart T A (1990) Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells. Cancer Res 50: 6902–6907

    PubMed  CAS  Google Scholar 

  • Rijnders A W M, Van der Korput J A G M, Van Steenbrugge G J, Romijn J C, Trapman J (1985) Expression of cellular oncogenes in human prostatic carcinoma cell lines. Biochem Biophys Res Comm 132: 548–554

    Article  PubMed  CAS  Google Scholar 

  • Rizzinno A (1988) Transforming growth factor-β: multiple effects on cell differentiation and extracellular matrices. Dev Biol 130: 411–422

    Article  Google Scholar 

  • Roberts A B, Sporn M B, Assoian R K et al. (1986) Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83: 4167–4171

    Article  PubMed  CAS  Google Scholar 

  • Samowitz W S, Pauli G, Hamilton S R (1988) Reported binding of monoclonal antibody RAP-5 to formalin-fixed tissue sections is not indicative of ras p21 expression. Hum Pathol 19: 127–132

    Article  PubMed  CAS  Google Scholar 

  • St Arnaud R, Poyet P, Walker P, Labrie F (1988) Androgens modulate epidermal growth factor receptor levels in the rat ventral prostate. Mol Cell Endocrinol 56: 21–27

    Article  PubMed  CAS  Google Scholar 

  • Schalken J A, Ebeling S B, Isaacs J T, Treiger B, Bussemakers M J G, De Jong M E M, Van de Ven W J M (1988) Down modulation of fibronectin mRNA in metastasizing rat prostatic cancer cells revealed by differential hybridization analysis. Cancer Res 48: 2042–2048

    PubMed  CAS  Google Scholar 

  • Starling J J, Sieg S M, Beckett M L et al. (1986) Human prostate tissue antigens defined by murine monoclonal antibodies. Cancer Res 46: 367–374

    PubMed  CAS  Google Scholar 

  • Steeg P S, Bevilacqua G B, Kopper L, Thorgeirsin U P, Talmadge J E, Liotta L, Sobel M E (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Nat Cancer Inst 80: 200–204

    Article  PubMed  CAS  Google Scholar 

  • Sumiya H, Masai M, Akimoto S, Yatani R, Shimazaki J (1990) Histochemical examination of expression of ras p21 protein and R1881-binding protein in human prostatic cancers. Eur J Cancer 26: 786–789

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Orita M, Shiraishi M, Hayashi K, Sekiya T (1990) Detection of ras gene mutations in human lung cancers by single-strand conformation analysis of polymerase chain reaction products. Oncogene 5: 1037–1043

    PubMed  CAS  Google Scholar 

  • Thompson T C (1990) Growth factors and oncogenes in prostate cancer. Cancer Cells 2: 345–354

    PubMed  CAS  Google Scholar 

  • Van der Kwast T H, Schalken J A, Ruizeveld-de Winter J A, Van Vroonhoven C C J, Mulder E, Boersma W, Trapman J (1991) Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer 48: 189–193

    Article  PubMed  Google Scholar 

  • Viola M V, Fromowitz F, Ovarez S et al.(1986) Expression of ras oncogene p21 in prostate cancer. New Engl J Med 314: 133–137

    Article  PubMed  CAS  Google Scholar 

  • Webb K S, Paulson D F, Parks S F, Tuck F L, Walther P J, Ware J L (1984) Characterization of prostate tissue directed monoclonal antibody: alpha-Pro 13. Cancer Immunol Immunother 17: 7–17

    Article  PubMed  CAS  Google Scholar 

  • Wilding G, Zugmeier G, Knabbe C, Flanders K, Gelmann E (1989) Differential effects of transforming growth factor β on human prostate cancer cells in vitro. Mol Cell Endocrinol 62:79–87

    Article  PubMed  CAS  Google Scholar 

  • Wilson M J, Ditmanson J V, Sinha A A, Estensen R D (1990) Plasminogen activator activities in the ventral and dorsolateral prostatic lobes of ageing Fischer 344 rats. Prostate 16: 147–161

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bussemakers, M.J.G., Debruyne, F.M.J., Schalken, J.A. (1993). Genetische Schritte in Zusammenhang mit der Entstehung des Prostatakarzinoms. In: Rübben, H., Goepel, M., Schmitz-Dräger, B.J. (eds) Immuntherapie in der Uroonkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77830-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77830-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77831-5

  • Online ISBN: 978-3-642-77830-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics