Skip to main content

Peptidergic Regulation of Smooth Muscle Contractility

  • Chapter
Gastrointestinal Regulatory Peptides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 106))

Abstract

The main functions of the smooth muscle of the gut are to mix and propel intraluminal contents in a coordinated manner in order to facilitate the digestion and absorption of nutrients and expulsion of unabsorbed residue. These functions are determined by intrinsic electrical and mechanical properties of the muscle and their regulation by hormones and neurotransmitters. The myenteric plexus, one of the two main components of the enteric nervous system, is particularly important in the regulation of smooth muscle activity. This chapter will discuss peptide hormones and transmitters that are important in the regulation of smooth muscle activity in the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian TE, Savage AP, Sagor GR, Allen JM, Bacarese-Hamilton AJ, Tatemoto K, Polak JM, Bloom SR (1985) Effect of peptide YY on gastric, pancreatic and biliary function in humans. Gastroenterology 89:494–499

    PubMed  CAS  Google Scholar 

  • Agoston DV, Fahrenkrug J, Mikkelesen JD, Whittaker VP (1989) A peptide with N-terminal histidine and C-terminal isoleucine amide (PHI) and vasoactive intestinal peptide (VIP) are copackaged in myenteric neurones of the guinea pig ileum. Peptides 10:571–573

    PubMed  CAS  Google Scholar 

  • Ahmad S, Daniel EE (1991) Receptors for neurotensin in canine small intestine. Peptides 12:623–629

    PubMed  CAS  Google Scholar 

  • Angel F, Go VLW, Schmalz PF, Szurszewski JH (1983) Vasoactive intestinal polypeptide. A putative neurotransmitter in the canine gastric muscularis mucosa. J Physiol (Lond) 341:641–645

    CAS  Google Scholar 

  • Angel F, Go VLW, Szurszewski JH (1984) Innervation of the muscularis mucosa of canine proximal colon. J Physiol (Lond) 357:93–108

    CAS  Google Scholar 

  • Barber DL, Buchan AMJ, Leeman SE, Soll AH (1989) Canine enteric submucosal cultures: transmitter release from neurotensin-immunoreactive neurons. Neuroscience 32:245–253

    PubMed  CAS  Google Scholar 

  • Biancani P, Walsh JH, Behar J (1984) Vasoactive intestinal polypeptide. A neurotransmitter for lower esophageal sphincter relaxation. J Clin Invest 73:963–967

    PubMed  CAS  Google Scholar 

  • Biancani P, Walsh JH, Behar J (1985) Vasoactive intestinal peptide: a transmitter for relaxation of the rabbit internal anal sphincter. Gastroenterology 89:867–874

    PubMed  CAS  Google Scholar 

  • Biancani P, Coy DH, Hillemeier C, Behar J (1986) [NAc-Tyr1, D-Phe2]-GRF(1–29)-NH2 and [D-Phe2]VIP act as VIP antagonists and reduce neurally mediated lower esophageal sphincter relaxation. Gastroenterology 91:1046

    Google Scholar 

  • Biancani P, Hillemeier C, Bitar KN, Makhlouf GM (1987) Contraction mediated by Ca2+ influx in esophageal muscle and by Ca2+ release in the LES. Am J Physiol 253:G760–G766

    PubMed  CAS  Google Scholar 

  • Bitar KN, Jensen RT (1983) Binding of 125I-VJP to isolated gastric smooth muscle cells. Gastroenterology 84:1107

    Google Scholar 

  • Bitar KN, Makhlouf GM (1982a) Relaxation of isolated gastric smooth muscle cells by vasoactive intestinal peptide. Science 216:531–533

    PubMed  CAS  Google Scholar 

  • Bitar KN, Makhlouf GM (1982b) Receptors on smooth muscle cells: characterization by contraction and specific antagonists. Am J Physiol 242:G400–407

    PubMed  CAS  Google Scholar 

  • Bitar KN, Makhlouf GM (1982c) Specific opiate receptors on isolated mammalian gastric smooth muscle cells. Nature 297:72–74

    PubMed  CAS  Google Scholar 

  • Bitar KN, Makhlouf GM (1985) Selective presence of opiate receptors on intestinal circular muscle cells. Life Sci 37:1545–1550

    PubMed  CAS  Google Scholar 

  • Bitar KN, Saffouri B, Makhlouf GM (1982) Cholinergic and peptidergic receptors on isolated human antral smooth muscle. Gastroenterology 82:832–837

    PubMed  CAS  Google Scholar 

  • Blackburn AM, Bloom SR, Long RG, Fletcher DR, Christofides ND, Fitzpatrick ML, Baron JH (1980) Effect of neurotensin on gastric function in man. Lancet 1:987–989

    PubMed  CAS  Google Scholar 

  • Chakder S, Rattan S (1990) [Tyr0]-calcitonin gene related peptide28–37 (rat) as a putative antagonist of calcitonin gene related peptide responses on opossum internal anal sphincter smooth muscle. J Pharmacol Exp Ther 253:200–206

    PubMed  CAS  Google Scholar 

  • Chakder S, Rattan S (1991) Effect of galanin on the opossum internal anal sphincter: structure-activity relationship. Gastroenterology 100:711–718

    PubMed  CAS  Google Scholar 

  • Chavkin C, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the K opioid receptor. Science 215:413–415

    PubMed  CAS  Google Scholar 

  • Chey W, Lee KY (1980) Motilin. Clin Gastroenterol 9:645–656

    PubMed  CAS  Google Scholar 

  • Chijiiwa Y, Mader C, Grider JR, Makhlouf GM (1989) Characterization of VIP receptors in cultured gastric smooth muscle cells. Gastroenterology 96:A86

    Google Scholar 

  • Corbett AD, McKnight AT, Kosterlitz HW (1988) Tissue content of opioid peptides in the myenteric plexus-longitudinal muscle of guinea pig small intestine. J Neurochem 51:32–37

    PubMed  CAS  Google Scholar 

  • Costa M, Furness JB, Yanaihara N, Yanaihara C, Moody TW (1984) Distributions and projections of neurons with gastrin releasing peptide/bombesin-like immunoreactivity in the guinea pig small intestine. Cell Tissue Res 235:285–293

    PubMed  CAS  Google Scholar 

  • Costa M, Furness JB, Pullin CO, Bornstein J (1985) Substance P enteric neurons mediate non-cholinergic transmission of the circular muscle of the guinea pig intestine. Naunyn Schmiedebergs Arch Pharmacol 328:446–453

    PubMed  CAS  Google Scholar 

  • Cox KL, von Schrenck T, Moran TH, Gardner JD, Jensen RT (1990) Characterization of cholecystokinin receptors on the sphincter of Oddi. Am J Physiol 259:G873–G881

    PubMed  CAS  Google Scholar 

  • D’Amato M, de Beurme FA, Lefebvre RA (1988) Comparison of the effect of vasoactive intestinal polypeptide and non-adrenergic, non-cholinergic neuron stimulation in the cat gastric fundus. Eur J Pharmacol 152:71–82

    PubMed  Google Scholar 

  • Dockray GJ (1990) Neuronal actions of cholecystokinin. In: Thompson J (ed) Gastrointestinal endocrinology: receptors and postreceptor mechanisms. Academic, New York, pp 321–332

    Google Scholar 

  • Ekblad E, Rokaeus A, Häkanson R, Sundler S (1985) Galanin nerve fibers in rat gut: distribution, origin, and projections. Neuroscience 16:355–363

    PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Galbo H, Holst JJ, Schaffalitzky de Muckadell OB (1978a) Influence of the autonomic nervous system on the release of vasoactive intestinal polypeptide from the porcine gastrointestinal tract. J Physiol (Lond) 280:405–422

    CAS  Google Scholar 

  • Fahrenkrug J, Haglund U, Jodal M, Lundgren O, Olbe L, Schaffalitzky de Muckadell OB (1978b) Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. J Physiol (Lond) 284:405–422

    Google Scholar 

  • Fahrenkrug J, Bek T, Lundberg JM, Hökfelt T (1985) VIP and PHI in cat neurons: co-localization but variable tissue content possible due to differential processing. Regul Pept 12:21–34

    PubMed  CAS  Google Scholar 

  • Fontaine J, Lebrun P (1985) Effects of neurotensin on the isolated mouse distal colon. Eur J Pharmacol 107:141–147

    PubMed  CAS  Google Scholar 

  • Fox JET, Kostolanska F, Daniel EE, Allescher HD, Hanke T (1987) Mechanism of excitatory actions of neurotensin on canine small intestine circular muscles in vivo and in vitro. Can J Physiol Pharmacol 65:2254–2259

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1979) Actions of somatostatin on excitatory and inhibitory nerves in the intestine. Eur J Pharmacol 56:69–74

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Furness JB, Lloyd KCK, Sternini C, Walsh JH (1990) Projections of substance P, vasoactive intestinal peptide and tyrosine hydroxylase immunoreactive nerve fibers in the canine intestine, with special reference to the innervation of the circular muscle layer. Arch Histol Cytol 53:129–140

    PubMed  CAS  Google Scholar 

  • Goyal RK, Rattan S, Said S (1980) VIP as a possible neurotransmitter of non-cholinergic, non-adrenergic inhibitory neurons. Nature 288:378–380

    PubMed  CAS  Google Scholar 

  • Grider JR (1989a) Identification of neurotransmitters regulating intestinal peristaltic reflex in humans. Gastroenterology 97:1414–1419

    PubMed  CAS  Google Scholar 

  • Grider JR (1989b) Tachykinins as transmitters of ascending contractile component of the peristalsis reflex. Am J Physiol 257:G709–G714

    PubMed  CAS  Google Scholar 

  • Grider JR (1990a) Identification of neurotransmitters by selective protection of postjunctional receptors. Am J Physiol 258:G103–G106

    PubMed  CAS  Google Scholar 

  • Grider JR (1990b) Identification of calcitonin gene related peptide (CGRP) as a sensory neurotransmitter of stretch-induced peristaltic reflex. Gastroenterology 98:A355

    Google Scholar 

  • Grider JR (1991) Somatostatin (SS) neurons regulate the descending limb of the peristaltic reflex by modulating the activity of opioid and GABA neurons. Gastroenterology 100:A445

    Google Scholar 

  • Grider JR, Makhlouf GM (1986) Colonic peristaltic reflex: identification of vasoactive intestinal peptide as mediator of descending relaxation. Am J Physiol 251:G40–G45

    PubMed  CAS  Google Scholar 

  • Grider JR, Makhlouf GM (1987a) Prejunctional inhibition of vasoactive intestinal peptide release. Am J Physiol 253:G7–G12

    PubMed  CAS  Google Scholar 

  • Grider JR, Makhlouf GM (1987b) Suppression of inhibitory neural input to colonic circular muscle by opioid peptides. J Pharmacol Exp Ther 243:205–210

    PubMed  CAS  Google Scholar 

  • Grider JR, Makhlouf GM (1987c) Regional and cellular heterogeneity of cholecystokinin receptors mediating muscle contraction in the gut. Gastroenterology 92:175–180

    PubMed  CAS  Google Scholar 

  • Grider JR, Makhlouf GM (1987d) Role of opioid neurons in the regulation of intestinal peristalsis. Am J Physiol 253:G226–G231

    PubMed  CAS  Google Scholar 

  • Grider JR, Makhlouf GM (1988a) Contraction mediated by Ca2+ release in circular and Ca2+ influx in longitudinal intestinal muscle cells. J Pharmacol Exp Ther 244:432–437

    PubMed  CAS  Google Scholar 

  • Grider JR, Makhlouf GM (1988b) The modulatory function of galanin: potentiation of VIP-induced relaxation in isolated smooth muscle cells. Gastroenterology 94:A157

    Google Scholar 

  • Grider JR, Makhlouf GM (1990) Distinct receptors for cholecystokinin and gastrin on muscle cells of stomach and gallbladder. Am J Physiol 259:G184–G190

    PubMed  CAS  Google Scholar 

  • Grider JR, Makhlouf GM (1991) Identification of opioid receptors on gastric muscle cells by selective receptor protection. Am J Physiol 260:G103–G107

    PubMed  CAS  Google Scholar 

  • Grider JR, Rivier JR (1990) Vasoactive intestinal peptide (VIP) as transmitter of inhibitory motor neurons of the gut: evidence from the use of selective VIP antagonists and VIP antiserum. J Pharmacol Exp Ther 253:738–742

    PubMed  CAS  Google Scholar 

  • Grider JR, Cable MB, Said SI, Makhlouf GM (1985a) Vasoactive intestinal peptide (VIP) as neural mediator of gastric relaxation. Am J Physiol 248:G73–G78

    PubMed  CAS  Google Scholar 

  • Grider JR, Cable MB, Bitar KN, Said SI, Makhlouf GM (1985b) Vasoactive intestinal peptide. Relaxant transmitter in tenia coli of the guinea pig. Gastroenterology 89:36–42

    PubMed  CAS  Google Scholar 

  • Grider JR, Arimura A, Makhlouf GM (1987) Role of somatostatin neurons in intestinal peristalsis: facilitatory interneurons in descending pathways. Am J Physiol 253:G434–G438

    PubMed  CAS  Google Scholar 

  • Guard S, Watson SP, Maggio JE, Too HP, Watling KJ (1990) Pharmacological analysis of [3H]-senktide binding to NK3 tachykinin receptors in guinea pig ileum longitudinal muscle-myenteric plexus and cerebral cortex membranes. Br J Pharmacol 99:767–773

    PubMed  CAS  Google Scholar 

  • Guillemin R (1976) Somatostatin inhibits the release of acetylcholine induced electrically in the myenteric plexus. Endocrinology 99:1653–1654

    PubMed  CAS  Google Scholar 

  • Hanyu N, Dodds WJ, Layman RD, Hogan WJ, Chey WY, Takahashi I (1990) Mechanism of cholecystokinin-induced contraction of the opossum gallbladder. Gastroenterology 98:1299–1306

    PubMed  CAS  Google Scholar 

  • Hellstrom PM (1987) Mechanisms involved in colonic vasoconstriction and inhibition of motility induced by neuropeptide Y. Acta Physiol Scand 129:549–556

    PubMed  CAS  Google Scholar 

  • Hellstrom PM, Nylander G, Rosell S (1982) Effects of neurotensin on the transit of gastrointestinal contents in the rat. Acta Physiol Scand 115:239–243

    PubMed  CAS  Google Scholar 

  • Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739

    PubMed  CAS  Google Scholar 

  • Holzer P, Bartho L, Matusak O, Bauer V (1989) Calcitonin gene-related peptide action on intestinal circular muscle. Am J Physiol 256:G546–G552

    PubMed  CAS  Google Scholar 

  • Ito S, Ohga A, Ohta T (1988) Gastric relaxation and vasoactive intestinal peptide output in response to reflex vagal stimulation in the dog. J Physiol (Lond) 404:683–693

    CAS  Google Scholar 

  • Ito S, Krokawa A, Ohga A, Ohta T, Swabe K (1990) Mechanical, electrical, and cyclic nucleotide responses to peptide VIP and inhibitory nerves stimulation in rat stomach. J Physiol (Lond) 430:337–353

    CAS  Google Scholar 

  • Itoh Z, Aizawa R, Takeuchi S, Couch EF (1975) Hunger contractions and motilin. In: Vantrappen G (ed) Proceedings of the 5th international symposium on gastrointestinal motility, Typoff Press, Herenthals, Belgium, pp 48–55

    Google Scholar 

  • Itoh Z, Nakayama M, Suzuki T, Arai H, Wakabayashi K (1984) Erythromycin mimics exogenous motilin in gastrointestinal contractile activity in the dog. Am J Physiol 247:G688–G694

    PubMed  CAS  Google Scholar 

  • Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine β-neo-endorphin/dynorphin precursor. Nature 298:245–249

    PubMed  CAS  Google Scholar 

  • Kamata K, Sakamoto A, Kasuya Y (1988) Similarities between the relaxations induced by vasoactive intestinal peptide and by stimulation of the non-adrenergic, non-cholinergic neurons in the rat stomach. Naunyn Schmiedebergs Arch Pharmacol 338:401–406

    PubMed  CAS  Google Scholar 

  • Keast JR, Furness JB, Costa M (1984) Somatostatin in human enteric nerves. Distribution and characterization. Cell Tissue Res 237:299–308

    PubMed  CAS  Google Scholar 

  • Kitabgi P, Freychet P (1979) Neurotensin: contractile activity, specific binding, and lack of effect on cyclic nucleotides in intestinal smooth muscle. Eur J Pharmacol 55:35–42

    PubMed  CAS  Google Scholar 

  • Kitabgi P, Vincent J-P (1981) Neurotensin is a potent inhibitor of guinea pig colon contractile activity. Eur J Pharmacol 74:311–318

    PubMed  CAS  Google Scholar 

  • Kitabgi P, Kwan CY, Fox JET, Vincent JP (1984) Characterization of neurotensin binding to rat gastric smooth muscle receptor sites. Peptides 5:917–923

    PubMed  CAS  Google Scholar 

  • Kuemmerle JF, Jin J-G, Grider JR, Makhlouf GM (1991) Characterization of distinct μ, δ, and k opioid receptors on intestinal muscle cells with selective radioligands and receptor protection. Gastroenterology 100:A650

    Google Scholar 

  • Kuemmerle JF, Makhlouf GM (1992) Characterization of opioid receptors in intestinal muscle cells by selective radioligands and receptor protection. Am J Physiol 263:G269–G276

    PubMed  CAS  Google Scholar 

  • Laburthe M, Chenut B, Rouyer-Fessard C, Tatemoto K, Clouvineau A, Servin S, Amiranoff B (1986) Interaction of peptide YY with rat intestinal epithelial plasma membranes: binding of the radioiodinated peptide. Endocrinology 118:1910–1917

    PubMed  CAS  Google Scholar 

  • Lee KY, Chang TM, Chey WY (1983) Effect of rabbit antimotilin serum on myoelectric activity and plasma motilin concentration in fasting dog. Am J Physiol 245:G547–G553

    PubMed  CAS  Google Scholar 

  • Lee KY, Biancani P, Behar J (1989) Calcium sources utilized by cholecystokinin and acetylcholine in the cat gallbladder muscle. Am J Physiol 256:G785–G788

    PubMed  CAS  Google Scholar 

  • Liddle RA, Gertz BJ, Kanayama S, Beccaria L, Coker LD, Turnbuîl TA, Morita T (1989) Effects of a novel cholecystokinin (CCK) receptor antagonist, MK-329, on gallbladder contraction and gastric emptying in humans. J Clin Invest 84:1220–1225

    PubMed  CAS  Google Scholar 

  • Louie DS, Owyang C (1988) Motilin receptors on isolated gastric smooth muscle cells. Am J Physiol 254:G210–G216

    PubMed  CAS  Google Scholar 

  • Lucaities VL, Mendelsohn LG, Mason NR, Cohen ML (1991) CCK-8, CCK-4 and gastrin-induced contractions in guinea pig ileum: evidence for differential release of acetylcholine and substance P by CCK-A and CCK-B receptors. J Pharmacol Exp Ther 56:695–703

    Google Scholar 

  • Maggi CA, Patacchini R, Giachetti A, Meli A (1990) Tachykinin receptors in the circular muscle of the guinea pig ileum. Br J Pharmacol 101:996–1000

    PubMed  CAS  Google Scholar 

  • Mao YK, Barnett W, Coy DH, Tougas G, Daniel EE (1991) Distribution of vasoactive intestinal polypeptide (VIP) binding in circular muscle and characterization of VIP binding in canine small intestine. J Pharmacol Exp Ther 258:986–991

    PubMed  CAS  Google Scholar 

  • Maton PN, Sutliff VE, Zhou ZC, Collins SM, Gardner JD, Jensen RT (1988) Characterization of receptors for calcitonin gene-related peptide on gastric smooth muscle cells. Am J Phsyiol 254:G789–G794

    CAS  Google Scholar 

  • Mayer EA, Elashoff J, Walsh JH (1982) Characterization of bombesin effects on canine gastric muscle. Am J Physiol 243:G141–G147

    PubMed  CAS  Google Scholar 

  • McHenry L, Murthy KS, Grider JR, Makhlouf GM (1991) Inhibition of muscle cell relaxation by somatostatin: tissue-specific, cAMP-dependent, pertussis toxin-sensitive. Am J Physiol 261:G45–G49

    PubMed  CAS  Google Scholar 

  • Menozzi D, Gardner JD, Jensen RT, Maton P (1989) Properties of receptors for gastrin and CCK on gastric smooth muscle cells. Am J Physiol 257:G73–G79

    PubMed  CAS  Google Scholar 

  • Micheletti R, Grider JR, Makhlouf GM (1988) Identification of bombesin receptors on isolated muscle cells from human intestine. Regul Pept 21:219–226

    PubMed  CAS  Google Scholar 

  • Morini G, Barocelli E, Impicciatore M, Grider JR, Makhlouf GM (1990) Receptor type for cholecystokinin on isolated muscle cells of the guinea pig. Regul Pept 28:313–321

    PubMed  CAS  Google Scholar 

  • Mulderry PK, Ghatel MA, Spookes RA, Jones PM, Pierson AM, Hamid QA, Kanse S, Amara SG, Burrin JM, Legon S, Polak JM, Bloom SR (1988) Differential expression of α-CGRP and β-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience 25:195–205

    PubMed  CAS  Google Scholar 

  • Murthy KS, Makhlouf GM (1991) Phosphoinositide metabolism in intestinal smooth muscle: preferential production of Ins(l,4,5)P3 in circular muscle cells. Am J Physiol 261:G945–G951

    PubMed  CAS  Google Scholar 

  • Noda M, Furutani Y, Takahashi H, Toyosato M, Hirose T, Inayama T, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295:202–206

    PubMed  CAS  Google Scholar 

  • Nurko S, Dunn BM, Rattan S (1989) Peptide histidine isoleucine and vasoactive intestinal polypeptide cause relaxation of opossum internal anal sphincter via two distinct receptors. Gastroenterology 96:403–413

    PubMed  CAS  Google Scholar 

  • Pappas TN, Debas HT, Chang AM, Taylor IL (1986) Peptide YY release by fatty acids is sufficient to inhibit gastric emptying in dogs. Gastroenterology 89:494–499

    Google Scholar 

  • Peeters TL, Vantrappen G, Janssens J (1980) Fasting motility levels are related to the interdigestive motility complex. Gastroenterology 79:716–719

    PubMed  CAS  Google Scholar 

  • Peeters TL, Janssens J, Vantrappen GR (1983) Somatostatin and the interdigestive migrating motor complex in man. Regul Pept 5:209–217

    PubMed  CAS  Google Scholar 

  • Peeters TL, Bormans V, Vantrappen G (1988) Comparison of motilin binding to crude homogenates of human and canine gastrointestinal smooth muscle tissue. Regul Pept 23:171–182

    PubMed  CAS  Google Scholar 

  • Poitras P (1984) Motilin is a digestive hormone in the dog. Gastroenterology 87:909–913

    PubMed  CAS  Google Scholar 

  • Rattan S, Goyal RK (1988) Effects of galanin on the opossum lower esophageal sphincter. Life Sci 41:2783–2790

    Google Scholar 

  • Raybould HE, Tache Y (1988) Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. Am J Physiol 255:G242–G246

    PubMed  CAS  Google Scholar 

  • Regoli D, Rhaleb N-E, Dion S, Tousignant C, Rouissi N, Jukic D, Drapeau G (1990) Neurokinin A. A pharmacological study. Pharmacol Res 22:1–14

    PubMed  CAS  Google Scholar 

  • Severi C, Grider JR, Makhlouf GM (1988) Identification of separate bombesin and substance P receptors on isolated muscle cells from canine gallbladder. J Pharmacol Exp Ther 245:195–198

    PubMed  CAS  Google Scholar 

  • Severi C, Jensen RT, Erspamer V, d’Arpino L, Coy DH, Torsoli A, Delle Fave G (1991) Different receptors mediate the action of bombesin-related peptides on gastric smooth muscle cells. Am J Physiol 260:G683–G690

    PubMed  CAS  Google Scholar 

  • Seybold VS, Treder BG, Aanonsen LM, Parsons A, Brown DR (1990) Neurotensin binding sites in porcine jejunum: biochemical characterization and intramural localization. Synapse 6:81–90

    PubMed  CAS  Google Scholar 

  • Sheikh P (1991) Neuropeptide Y and peptide YY: major modulators of gastrointestinal blood flow and function. Am J Physiol 261:G701–G715

    PubMed  CAS  Google Scholar 

  • Sheikh SP, Hakanson R, Schwartz TW (1989) Y1 and Y2 receptors for neuropeptide Y. FEBS Lett 245:209–214

    PubMed  CAS  Google Scholar 

  • Sheikh SP, Roach E, Fuhlendorff J, Williams JA (1991) Localization of Y1 receptors for NPY and PYY on vascular smooth muscle cells in rat pancreas. Am J Physiol 260:250–257

    Google Scholar 

  • Sjöqvist A, Fahrenkrug J (1987) Release of vasoactive intestinal polypeptide anally of a local distension of the feline small intestine. Acta Physiol Scand 130:433–438

    PubMed  Google Scholar 

  • Sternini C, Anderson K, Frantz G, Krause JE, Brecha N (1989) Expression of substance P/neurokinin A-encoding preprotachykinin messenger ribonucleic acids in the rat enteric nervous system. Gastroenterology 97:348–356

    PubMed  CAS  Google Scholar 

  • Strunz U, Domschke W, Mitznegg P, Domschke S, Schubert E, Wuensch E, Jaerger E, Demling L (1975) Analysis of the motor effect of 13-norleucine motilin on the rabbit, guinea pig, rat and human alimentary tract in vitro. Gastroenterology 68:1485–1491

    PubMed  CAS  Google Scholar 

  • Takahashi T, May D, Owyang C (1991) Cholinergic dependence of gallbladder response to cholecystokinin in the guinea pig in vivo. Am J Physiol 261:G565–G569

    PubMed  CAS  Google Scholar 

  • Takeda T, Taniyama K, Baba S, Tanaka C (1989) Putative mechanisms involved in excitatory and inhibitory effects of somatostatin on intestinal motility. Am J Physiol 257:G532–G538

    PubMed  CAS  Google Scholar 

  • Teitelbaum DH, O’Dorisio TM, Perkins WE, Gaginella TS (1984) Somatostatin modulation of peptide-induced acetylcholine release in guinea pig ileum. Am J Physiol 246:G509–G514

    PubMed  CAS  Google Scholar 

  • Vantrappen G, Janssens J, Peeters TL, Bloom SR, Christofides N, Hellemans J (1979) Motilin and the interdigestive migrating motor complex in man. Am J Dig Dis 24:497–500

    CAS  Google Scholar 

  • Von Schrenck T, Heinz-Erian P, Moran T, Mantey SA, Gardner JD, Jensen RT (1989) Neuromedin B receptor in esophagus: evidence for subtypes of bombesin receptors. Am J Physiol 256:G747–G758

    Google Scholar 

  • Von Schrenck T, Wang LH, Coy DH, Villanueva ML, Mantey S, Jensen RT (1990) Potent bombesin receptor antagonists distinguish receptor subtypes. Am J Physiol 259:G468–G473

    Google Scholar 

  • Waterfield AA, Smokcum RWS, Hughes J, Kosterlitz HW, Henderson G (1977) In vitro pharmacology of the opioid peptides, enkephalins and endorphins. Eur J Pharmacol 43:107–116

    PubMed  CAS  Google Scholar 

  • Wormser U, Laufer R, Hart Y, Choren M, Coilon C, Selinger Z (1986) Highly selective agonists for substance P receptor. EMBO J 5:2805–2808

    PubMed  CAS  Google Scholar 

  • Wiley JW, O’Dorisio TM, Owyang C (1988) Vasoactive intestinal polypeptide mediates cholecystokinin-induced relaxation of the sphincter of Oddi. J Clin Invest 81:1920–1924

    PubMed  CAS  Google Scholar 

  • Wiley JW, Lu Y, Owyang C (1991) Mechanism of action of peptide YY to inhibit gastric motility. Gastroenterology 100:865–872

    PubMed  CAS  Google Scholar 

  • Wuster M, Rubini P, Schultz R (1981) The preference of putative pro-enkephalins for different types of opiate receptors. Life Sci 29:1219–1227

    PubMed  CAS  Google Scholar 

  • Yau WM, Dorsett JA, Youther ML (1986) Evidence for galanin as an inhibitory neuropeptide on cholinergic neurons in the guinea pig small intestine. Neurosci Lett 72:305–308

    PubMed  CAS  Google Scholar 

  • Zetler G (1980) Antagonism of the gut contracting effects of bombesin and neurotensin by opioid peptides, morphine, atropine or tetrodotoxin. Pharmacology 21:348–354

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grider, J.R. (1993). Peptidergic Regulation of Smooth Muscle Contractility. In: Brown, D.R. (eds) Gastrointestinal Regulatory Peptides. Handbook of Experimental Pharmacology, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77814-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77814-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77816-2

  • Online ISBN: 978-3-642-77814-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics