Skip to main content

Peptides and Enteric Neural Activity

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 106))

Abstract

There have been many advances in recent years in our understanding of the neurophysiology and neurochemistry of enteric neurons. The mechanisms by which neurotransmitters, including some peptides, affect gastrointestinal (GI) function have, in some cases, been described in great detail. There is a large number of peptides contained in and released from enteric nerves and endocrine cells in the GI tract and the localization and characterization of these peptides and their precursors are the subjects of other chapters in this volume. This chapter will focus on the actions of GI peptides on single neurons found in the intramural plexuses of the GI tract, including nerve cells in the gall bladder and pancreas. The focus will be on the receptors present on neurons, the ionic mechanisms by which peptides alter neuronal activity and the transduction systems, if known, by which peptide receptors are coupled to ion channels in enteric nerves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasu T, Tokimasa T (1989) Potassium currents in submucous neurones of guinea pig caecum and their synaptic modification. J Physiol (Lond) 416:571–588

    CAS  Google Scholar 

  • Baron SA, Jaffe BM, Gintzler AR (1983) Release of substance P from the enteric nervous system: direct quantitation and characterization. J Pharmacol Exp Ther 227:365–368

    PubMed  CAS  Google Scholar 

  • Bartho L, Holzer P (1985) Search for a physiological role for substance P in gastrointestinal motility. Neuroscience 16:1–32

    PubMed  CAS  Google Scholar 

  • Bauer AJ, Szurszewski JH (1991) Effect of opioid peptides on circular muscle of canine duodenum. J Physiol (Lond) 434:409–422

    CAS  Google Scholar 

  • Bauer AJ, Hanani M, Muir TC, Szurszewski JH (1991) Intracellular recordings from gall bladder ganglia of opossums. Am J Physiol 260:299–306

    Google Scholar 

  • Bornstein JC, North RA, Costa M, Furness JB (1984) Excitatory synaptic potentials due to activation of neurons with short projections in the myenteric plexus. Neuroscience 11:723–731

    PubMed  CAS  Google Scholar 

  • Brookes SJH, Ewart WR, Wingate DL (1988) Intracel lular recordings from cells in the myenteric plexus of the rat duodenum. Neuroscience 24:297–307

    PubMed  CAS  Google Scholar 

  • Buck SH, Burcher E, Shults C, Lovenberg W, O’Donohue TL (1984) Novel pharmacology of substance K binding sites: a third type of tachykinin receptor. Science 226:987–989

    PubMed  CAS  Google Scholar 

  • Burks TF (1986) Actions of drugs on gastrointestinal motility. In: Johnson LR, Christensen J, Jackson MJ, Jacobson ED, Walsh JH (eds) Physiology of the digestive tract, vol 1, 2nd edn. Raven, New York, p 723

    Google Scholar 

  • Burks TF, Hirning LD, Galligan JJ, Davis TP (1982) Motility effects of opioid peptides in dog intestine. Life Sci 31:2237–2240

    PubMed  CAS  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium activated phospholipid-dependent protein kinase by tumor promoting phorbol esters. J Biol Chem 257:7847–7851

    PubMed  CAS  Google Scholar 

  • Chang RSL, Lotti VJ (1986) Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci USA 83:4923–4926

    PubMed  CAS  Google Scholar 

  • Cherubini E, North RA (1985) Mu and kappa opioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci USA 82:1860–1863

    PubMed  CAS  Google Scholar 

  • Cherubini E, Morita K, North RA (1985) Opioid inhibition of synaptic transmission in the guinea pig myenteric plexus. Br J Pharmacol 85:805–817

    PubMed  CAS  Google Scholar 

  • Costa M, Furness JB, Llewellyn-Smith IJ, Cuello AC (1981) Projections of substance P-containing neurons within the guinea pig small intestine. Neuroscience 6: 411–424

    PubMed  CAS  Google Scholar 

  • Deacon CF, Agoston DV, Nau R, Conlon JM (1987) Conversion of neuropeptide K to neurokinin A and vesicular co-localization of neurokinin A and substance P in neurons of the guinea pig small intestine. J Neurochem 48:141–136

    PubMed  CAS  Google Scholar 

  • Emson PC, Diez-Guerra FJ, Hirai H (1987) Mammalian tachykinins: neurochemistry and pharmacology. In: Turner AJ (ed) Neuropeptides and their peptidases. VCH, Weinheim, p 87

    Google Scholar 

  • Featherstone RL, Fosbraey P, Morton IKM (1986) A comparison of the effect of three substance P antagonists on tachykinin stimulated [3H]acetylcholine release in the guinea-pig ileum. Br J Pharamcol 87:73–78

    CAS  Google Scholar 

  • Galligan JJ, North RA (1991) Opioid, 5-HT1A and α2 receptors localized to subsets of guinea pig myenteric neurons. J Auton Nerv Syst 32:1–12

    PubMed  CAS  Google Scholar 

  • Galligan JJ, North RA, Tokimasa T (1989) Muscarinic agonists and potassium currents in guinea-pig myenteric neurones. Br J Pharmacol 96:193–203

    PubMed  CAS  Google Scholar 

  • Galligan JJ, Tokimasa T, North RA (1987) Effects of three mammalian tachykinins on single enteric neurons. Neurosci Lett 82:167–171

    PubMed  CAS  Google Scholar 

  • Galligan JJ, Jiang M-M, Shen K-Z, Surprenant A (1990) Substance P mediates neurogenic vasodilation in extrinsically denervated guinea-pig submucosal arterioles. J Physiol (Lond) 420:267–280

    CAS  Google Scholar 

  • Grafe P, Mayer CJ, Wood JD (1980) Synaptic modulation of calcium-dependent potassium conductance in myenteric neurones in the guinea-pig. J Physiol (Lond) 305:235–248

    CAS  Google Scholar 

  • Guard S, Watling KJ, Watson SP (1988) Neurokinin3 receptors are linked to inositol phospholipid hydrolysis in the guinea-pig ileum longitudinal muscle myenteric plexus preparation. Br J Pharmacol 94:148–154

    PubMed  CAS  Google Scholar 

  • Guillemin R (1976) Somatostatin inhibits the release of acetylcholine induced electrically in the myenteric plexus. Endocrinology 99:1653–1654

    PubMed  CAS  Google Scholar 

  • Hanani M, Bunstock G (1984) Substance P evokes fast and slow responses in cultured myenteric neurons of the guinea pig. Neurosci Lett 48:19–23

    PubMed  CAS  Google Scholar 

  • Hanani M, Burnstock G (1985) The actions of substance P and serotonin on myenteric neurons in culture. Brain Res 358:276–281

    PubMed  CAS  Google Scholar 

  • Hanani M, Chorev M, Gilon C, Selinger Z (1988) The actions of receptor selective substance P analogs on myenteric neurons: an electrophysiological investigation. Eur J Pharmacol 153:247–253

    PubMed  CAS  Google Scholar 

  • Henry JL (1987) Discussion of nomenclature for tachykinins and tachykinin receptors. In: Henry JL, Couture R, Cuello AC, Pelletier G, Quirion R, Regoli D (eds) Substance P and neurokinins. Springer, Berlin Heidelberg New York, p 17

    Google Scholar 

  • Hirning LD, Fox AP, Miller RJ (1990) Inhibition of calcium currents in cultured myenteric neurons by neuropeptide Y: evidence for direct receptor channel coupling. Brain Res 532:120–130

    PubMed  CAS  Google Scholar 

  • Hirst GDS, Holman ME, Spence I (1974) Two types of neurones in the myenteric plexus of duodenum in the guinea pig. J Physiol (Lond) 236:303–326

    CAS  Google Scholar 

  • Hirst GDS, Johnson SM, van Helden DF (1985) The slow calcium-dependent potassium current in a myenteric neurone of the guinea pig ileum. J Physiol (Lond) 361:315–337

    CAS  Google Scholar 

  • Holzer P (1984) Characterization of the stimulus induced release of immunoreactive substance P of the guinea pig small intestine. Brain Res 297:127–136

    PubMed  CAS  Google Scholar 

  • Holzer P, Lippe IT (1985) Substance P action on phosphoinositides in guinea pig intestinal muscle: a possible transduction mechanism. Naunyn Schmiedebergs Arch Pharmacol 329:50–55

    PubMed  CAS  Google Scholar 

  • Hoyle CHV, Kamm MA, Burnstock G, Lennard-Jones JE (1990) Enkephalins modulate inhibitory neuromuscular transmission in circular muscle of human colon via delta opioid receptors. J Physiol (Lond) 431:465–478

    CAS  Google Scholar 

  • Johnson SM, Katayama Y, North RA (1980) Slow synaptic potentials in neurones of the myenteric plexus. J Physiol (Lond) 301:505–516

    CAS  Google Scholar 

  • Johnson SM, Katayama Y, Morita K, North RA (1981) Mediators of slow synaptic potentials in the myenteric plexus of the guinea pig ileum. J Physiol (Lond) 320:176–186

    Google Scholar 

  • Katayama Y, North RA (1978) Does substance P mediate slow synaptic excitation within the myenteric plexus? Nature 274:387–388

    PubMed  CAS  Google Scholar 

  • Katayama Y, North RA (1980) The action of somatostatin on neurones of the myenteric plexus of the guinea-pig ileum. J Physiol (Lond) 303:315–323

    CAS  Google Scholar 

  • Katayama Y, North RA, Williams JT (1979) The action of substance P on neurons of the myenteric plexus of the guinea pig small intestine. Proc Soc Lond [B] 206:191–208

    CAS  Google Scholar 

  • Keast JR, Furness JB, Costa M (1985) Different substance P receptors are found on mucosal epithelial cells and submucous neurons of the guinea pig small intestine. Naunyn Schmiedebergs Arch Pharmacol 318:281–287

    Google Scholar 

  • Keast JR, Furness JB, Costa M (1986) Effects of noradrenaline and somatostatin on basal and stimulated mucosal ion transport in the guinea pig small intestine. Naunyn Schmiedebergs Arch Pharmacol 337:393–399

    Google Scholar 

  • Kilbinger H, Stauss P, Erlhof I, Holzer P (1986) Antagonist discrimination between subtypes of tachykinin receptors in the guinea pig ileum. Naunyn Schmiedebergs Arch Pharmacol 334:181–187

    PubMed  CAS  Google Scholar 

  • Laufer R, Wormser U, Friedman ZY, Gilon C, Chorev M, Selinger Z (1985) Neurokinin B is a preferred agonist for a neuronal substance P receptor and its action is antagonized by enkephalin. Proc Natl Acad Sci USA 82:7444–7448

    PubMed  CAS  Google Scholar 

  • Leander S, Hakanson R, Rosell S, Folkers K, Sundler F, Tornqvist K (1981) A specific substance P antagonist blocks smooth muscle contractions induced by non-cholinergic, non-adrenergic nerve stimulation. Nature 294:467–469

    PubMed  CAS  Google Scholar 

  • Lee CM, Iversen LL, Hanley MR, Sandberg B (1982) The possible existence of multiple receptors for substance P. Naunyn Schmiedebergs Arch Pharmacol 318:281–287

    PubMed  CAS  Google Scholar 

  • Lu Y, Louie DS, Owyang C (1991) Characterization of neuronal cholecystokinin receptors in the myenteric plexus: role of CCK A and CCK B receptors in cholinergic transmission. Gastroenterology 100:A653

    Google Scholar 

  • Ma RC, Szurszewski JH (1991) Quantitative analysis of facilitating effect of sulfated cholecystokinin (S-CCK-8) on nicotinic transmission in cat intrapancreatic ganglia. Gastroenterology 100:A653

    Google Scholar 

  • Maggio JE, Manyth PW (1989) Gut tachykinins. In: Schultz SG, Makhlouf GM, Rauner BB (eds) Neural and endocrine biology. Oxford University Press, New York, p 661(Handbook of physiology sect 6: The gastrointestinal system, vol 2)

    Google Scholar 

  • Mawe GM (1990) Intracellular recording from neurones if the guinea pig gall bladder. J Physiol (Lond) 429:323–338

    CAS  Google Scholar 

  • Mawe GM (1991) The role of cholecystokinin in ganglionic transmission in guinea-pig gall-bladder. J Physiol (Lond) 439:89–102

    CAS  Google Scholar 

  • Mihara S, North RA (1986) Opioids increase potassium conductance in submucous neurones of guinea-pig caecum by activating δ-receptors. Br J Pharmacol 88: 315–322

    PubMed  CAS  Google Scholar 

  • Mihara S, Katayama Y, Nishi S (1985) Slow synaptic potentials in neurones of submucous plexus of guinea pig caecum and their mimicry by noradrenaline and various peptides. Neuroscience 16:1057–1068

    PubMed  CAS  Google Scholar 

  • Mihara S, Nishi S, North RA, Surprenant A (1987a) A non-adrenergic, non-cholinergic slow inhibitory post synaptic potential in neurones of the guinea pig submucous plexus. J Physiol (Lond) 390:357–365

    CAS  Google Scholar 

  • Mihara S, North RA, Surprenant A (1987b) Somatostatin increases an inwardly rectifying potassium conductance in guinea-pig submucous plexus neurones. J Physiol (Lond) 390:335–355

    CAS  Google Scholar 

  • Morita K, North RA (1982) Opiate activation of potassium conductance in myenteric neurons: inhibition by calcium ion. Brain Res 242:145–190

    PubMed  CAS  Google Scholar 

  • Morita K, North RA, Tokimasa T (1982) The calcium-activated potassium conductance in guinea pig myenteric neurones. J Physiol (Lond) 329:341–354

    CAS  Google Scholar 

  • Mulholland MW, Jaffer S (1990) Stimulation of acetylcholine release in myenteric plexus by calcitonin gene-related peptide. Am J Physiol 259:G934–G939

    PubMed  CAS  Google Scholar 

  • Nemeth PR, Ewart WR, Wood JD (1983) Effects of the putative substance P antagonists (D-Pro2, D-Phe7, D-Trp9 and D-Pro2, D-Trp7, D-Trp9) on electrical activity of myenteric neurons. J Auton Nerv Syst 8:165–169

    PubMed  CAS  Google Scholar 

  • Nemeth PR, Zafirov DH, Wood JD (1985) Effects of cholecystokinin, caerulein and pentagastrin on electrical behavior of myenteric neurons. Eur J Pharmacol 116:263–285

    PubMed  CAS  Google Scholar 

  • Nemeth PR, Palmer JM, Wood JD, Zafirov DH (1986) Effects of forskolin on electrical behaviour of myenteric neurones in guinea-pig small intestine. J Physiol (Lond) 376:439–450

    CAS  Google Scholar 

  • Ngu MC (1983) The effect of cholecystokinin octapeptide on guinea pig enteric neurons. Aust N Z J Med 13:316

    Google Scholar 

  • Nishi S, North RA (1973) Intracellular recording from the myenteric plexus of the guinea pig ileum. J Physiol (Lond) 231:471–491

    CAS  Google Scholar 

  • North RA (1989) Drug receptors and the inhibition of nerve cells. Br J Pharmacol 98:13–28

    PubMed  CAS  Google Scholar 

  • North RA, Tokimasa T (1983) Depression of calcium dependent potassium conductance of guinea pig myenteric neurones by muscarinic agonists. J Physiol (Lond) 342:253–266

    CAS  Google Scholar 

  • North RA, Tokimasa T (1987) Persistent calcium sensitive potassium current and the resting properties of guinea-pig myenteric neurones. J Physiol (Lond) 386: 333–353

    CAS  Google Scholar 

  • North RA, Williams JT (1976) Enkephalin inhibits firing of myenteric neurones. Nature 264:460–461

    PubMed  CAS  Google Scholar 

  • North RA, Katayama Y, Williams JT (1979) On the mechanism and site of action of enkephalin on single myenteric neurones. Brain Res 165:67–77

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA 84:5487–5491

    PubMed  CAS  Google Scholar 

  • Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443

    PubMed  CAS  Google Scholar 

  • Palmer JM, Scheman M, Tamura K, Wood JD (1986a) Calcitonin gene related peptide excites myenteric plexus neurons. Eur J Pharmacol 132:163–170

    PubMed  CAS  Google Scholar 

  • Palmer JM, Wood JD, Zafirov DH (1986b) Elevation of adenosine 3′,-5′ phosphate mimics slow synaptic excitation in myenteric neurones of the guinea pig. J Physiol (Lond) 376:451–460

    CAS  Google Scholar 

  • Palmer JM, Wood JD, Zafirov DH (1987a) Purinergic inhibition in the small intestinal myenteric plexus of the guinea-pig. J Physiol (Lond) 387:357–369

    CAS  Google Scholar 

  • Palmer JM, Wood JD, Zafirov DH (1987b) Transduction of aminergic and peptidergic signals in enteric neurones of the guinea pig. J Physiol (Lond) 387:371–383

    CAS  Google Scholar 

  • Paton WDM (1957) The action of morphine and related substances on contraction and acetylcholine output of coaxially stimulated guinea pig ileum. Br J Pharmacol 11:119–127

    Google Scholar 

  • Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 303: 250–253

    Google Scholar 

  • Pillai NP, Johnson SM (1991) The electrophysiological effects of [D-Ala2, N-Me-Phe4, Gly5-ol]enkephalin on guinea pig myenteric neurons. Eur J Pharmacol 192:227–233

    PubMed  CAS  Google Scholar 

  • Regoli D, Orleans -Juste PD, Drapeau G, Dion S, Escher E (1985) Pharmacological characterization of substance P antagonists. In: Hakanson R, Sundler F (eds) Tachykinin antagonists. Elsevier, Amsterdam, p 277

    Google Scholar 

  • Sato TI, Takayanagi K, Takagi K (1973) Pharmacological properties of electrical activities obtained from neurons in Auerbach’s plexus. Jpn J Pharmacol 23: 665

    PubMed  CAS  Google Scholar 

  • Schauman W (1957) Inhibition by morphine of acetylcholine release from the intestine of guinea pig. Br J Pharmacol 12:115–118

    Google Scholar 

  • Seamon KB, Daly JW (1981) Forskolin: a unique diterpine activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res 1:201–224

    Google Scholar 

  • Shen K-Z, Surprenant A (1990) Mechanisms underlying presynaptic inhibition through α2-adrenoceptors in guinea pig submucosal neurones. J Physiol (Lond) 431:609–628

    CAS  Google Scholar 

  • Surprenant A (1984) Slow excitatory synaptic potentials recorded from neurones of guinea pig submucous plexus. J Physiol (Lond) 351:343–361

    CAS  Google Scholar 

  • Surprenant A, North RA (1985) μ and α2 adrenoceptors coexist on myenteric but not on submucous neurones. Neuroscience 16:425–430

    PubMed  CAS  Google Scholar 

  • Surprenant A, North RA, Katayama Y (1987) Observations on the actions of substance P and [D-Arg1, D-Pro2, D-Trp7,9, Leu11]substance P in single neurons of the guinea pig submucous plexus. Neuroscience 20:189–199

    PubMed  CAS  Google Scholar 

  • Surprenant A, Shen K-Z, North RA, Tatsumi H (1990) Inhibition of calcium currents by noradrenaline, somatostatin and opioids in guinea pig submucosal neurones. J Physiol (Lond) 431:585–608

    CAS  Google Scholar 

  • Tack JF, Janssens W, Janssens J, Vantrappen G, Wood JD (1991) Motilin and erythromycin excite myenteric neurons in gastric antrum of the guinea pig. Gastroenterology 100:A500

    Google Scholar 

  • Tamura K, Palmer JM, Wood JD (1987) Galanin suppresses nicotinic synaptic transmission in the myenteric plexus of guinea pig small intestine. Eur J Pharmacol 136:445–446

    PubMed  CAS  Google Scholar 

  • Tamura K, Palmer JM, Winkelman CK, Wood JD (1988) Mechanism of action of galanin on myenteric neurons. J Neurophysiol 60:966–979

    PubMed  CAS  Google Scholar 

  • Tatsumi H, Costa M, Schimerlik M, North RA (1990) Potassium conductance increased by noradrenaline, opioids, somatostatin, and G-proteins: whole cell recording from guinea pig submucous neurons. J Neurosci 10:1675–1682

    PubMed  CAS  Google Scholar 

  • Tokimasa T, North RA (1984) Many transmitters, few channels. In: Chan-Palay V, Chan-Palay SL (eds) Coexistence of neuroactive substances in neurons. Wiley, New York, pp 217–224

    Google Scholar 

  • Wade PR, Wood JD (1988) Actions of serotonin and substance P on myenteric neurons of guinea pig distal colon. Eur J Pharmacol 148:1–8

    PubMed  CAS  Google Scholar 

  • Watson SP (1984) The action of substance P on contraction, inositol phospholipids and adenylate cyclase in rat small intestine. Biochem Pharmacol 33:3733–3737

    PubMed  CAS  Google Scholar 

  • Watson SP, Downes CP (1983) Substance P induced hydrolysis of inositol phospholipids in guinea pig ileum and rat hypothalamus. Eur J Pharmacol 93:245–253

    PubMed  CAS  Google Scholar 

  • Willard AL (1990a) Substance P mediates synaptic transmission between rat myenteric neurones in cell culture. J Physiol (Lond) 426:453–471

    CAS  Google Scholar 

  • Willard AL (1990b) A vasoactive intestinal peptide-like cotransmitter at cholinergic synapses between rat myenteric neurons in cell culture. J Neurosci 10:1025–1034

    PubMed  CAS  Google Scholar 

  • Willard AL, Nishi R (1985) Neurons dissociated from rat myenteric plexus retain differentiated properties when grown in cell culture. II. Electrophysiological properties and responses to neurotransmitter candidates. Neuroscience 16:201–211

    PubMed  CAS  Google Scholar 

  • Willard AL, Nishi R (1987) Neuropeptides mark functionally distinguishable cholinergic enteric neurons. Brain Res 422:163–167

    PubMed  CAS  Google Scholar 

  • Williams JT, North RA (1978) Inhibition of firing of myenteric neurones by somatostatin. Brain Res 155:165–168

    PubMed  CAS  Google Scholar 

  • Williams JT, North RA (1979) VIP excites neurones of the myenteric plexus. Brain Res 175:174–177

    PubMed  CAS  Google Scholar 

  • Wood JD, Mayer CJ (1978) Slow synaptic excitation mediated by serotonin in Auerbach’s plexus. Nature 276:836–837

    PubMed  CAS  Google Scholar 

  • Wormser U, Laufer R, Hart Y, Chorev M, Gilon C, Selinger Z (1986) Highly selective agonists for substance P receptor subtypes. EMBO J 5:2805–2808

    PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein GK. Science 235:207–211

    PubMed  CAS  Google Scholar 

  • Zafirov DH, Palmer JM, Nemeth PR, Wood JD (1985) Bombesin, gastrin releasing peptide and VIP excite myenteric neurons. Eur J Pharmacol 115:103–107

    PubMed  CAS  Google Scholar 

  • Zelles T, Harsing LG, Vizi ES (1990) Characterization of neuronal cholecystokinin receptor by L-364,718 in Auerbach’s plexus. Eur J Pharmacol 178:101–104

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Galligan, J.J. (1993). Peptides and Enteric Neural Activity. In: Brown, D.R. (eds) Gastrointestinal Regulatory Peptides. Handbook of Experimental Pharmacology, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77814-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77814-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77816-2

  • Online ISBN: 978-3-642-77814-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics