Proteolytic Inactivation of Neurohormonal Peptides in the Gastrointestinal Tract

  • J. M. Conlon
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 106)


The gastrointestinal tract is a major site of production and inactivation of neurohormonal peptides. While biochemical and morphological aspects of the synthesis of gastrointestinal peptides have been studied in detail, relatively little work has been done to investigate the mechanisms by which these peptides are degraded following release. The neurohormonal peptides discussed in this article have different cellular distributions both along and within the different layers of the stomach and gut. Consequently, an analysis of the mechanisms by which these peptides are inactivated must take into account the microenvironment into which they are released.


Aminopeptidase Activity Neutral Endopeptidase Longitudinal Muscle Layer Gastrointestinal Peptide Dipeptidyl Aminopeptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acker GR, Molineaux CJ, Orlowski M (1987) Synaptosomal membrane-bound form of endopeptidase 24.15 generates Leu-enkephalin from dynorphin1–8, α- and β-neoendorphin, and Met-enkephalin from Met-enkephalin-Arg6-Gly7-Leu8. J Neurochem 48:284–292PubMedCrossRefGoogle Scholar
  2. Allen M, McMartin C, Peters GE, Wade R (1984) The mechanism of degradation of cyclo(-Asn-Phe-Phe-D-Trp-Lys-Thr-Phe-Gaba-) and the relative stabilities of this and other octapeptide somatostatin analogues in rat intestinal juice. Regul Pept 10:29–35PubMedCrossRefGoogle Scholar
  3. Aoki K, Kajiwara M, Oka T (1984) The role of bestatin-sensitive aminopeptidase, angiotensin-converting enzyme and thiorphan sensitive “enkephalinase” in the potency of enkephalins in the guinea pig ileum. Jpn J Pharmacol 36:59–65PubMedCrossRefGoogle Scholar
  4. Barber DL, Buchan AMJ, Walsh JH, Soll AH (1986) Isolated canine ileal mucosal in short-term culture: a model for study of neurotensin release. Am J Physiol 250:G374–G384PubMedGoogle Scholar
  5. Barclay RK, Phillipps MA (1980) Inhibition of enkephalin-degrading aminopeptidase activity by certain peptides. Biochem Biophys Res Commun 96:1732–1738PubMedCrossRefGoogle Scholar
  6. Barelli H, Vincent JP, Checler F (1988) Peripheral inactivation of neurotensin. Isolation and characterization of a metallopeptidase from rat ileum. Eur J Biochem 175:481–489PubMedCrossRefGoogle Scholar
  7. Barelli H, Ahmad S, Kostka P, Fox JET, Daniel EE, Vincent JP, Checler F (1989) Neuropeptide-hydrolysing activities in synaptosomal fractions from dog ileum myenteric, deep muscular and submucous plexi. Their participation in neurotensin inactivation. Peptides 10:1055–1061PubMedCrossRefGoogle Scholar
  8. Benajiba A, Maroux S (1980) Purification and characterization of an aminopeptidase A from hog intestinal brush border membranes. Eur J Biochem 107:381–388PubMedCrossRefGoogle Scholar
  9. Bunnett NW, Mogard M, Orloff MS, Corbet HJ, Reeve JR, Walsh JH (1984) Catabolism of neurotensin in interstitial fluid of the rat stomach. Am J Physiol 246:G675–G682PubMedGoogle Scholar
  10. Bunnett NW, Debas HT, Turner AJ, Kobayashi R, Walsh JH (1988a) Metabolism of gastrin and cholecystokinin by endopeptidase 24.11 from the pig stomach. Am J Physiol 255:G676–G678PubMedGoogle Scholar
  11. Bunnett NW, Turner AJ, Hryszko J, Kobayashi R, Walsh JH (1988b) Isolation of endopeptidase-24.11 (EC, “enkephalinase”) from the pig stomach. Gastroenterology 95:952–957PubMedGoogle Scholar
  12. Bunnett NW, Walsh JH, Debas HT (1990) Metabolism of enkephalin in the stomach wall of rats. Am J Physiol 258:G143–G151PubMedGoogle Scholar
  13. Bunning P, Riordan JF (1983) Activation of angiotensin converting enzyme by monovalent anions. Biochemistry 22:110–116PubMedCrossRefGoogle Scholar
  14. Bunning P, Holmquist B, Riordan JF (1983) Substrate specificity and kinetic characteristics of angiotensin converting enzyme. Biochemistry 22:103–110PubMedCrossRefGoogle Scholar
  15. Chaillet P, Marcais-Collado H, Costentin J, Yi CC, de la Baume S, Schwartz JC (1983) Inhibition of enkephalin metabolism by, and antinociceptive activity of, bestatin, an aminopeptidase inhibitor. Eur J Pharmacol 86:329–336PubMedCrossRefGoogle Scholar
  16. Checler F, Vincent JP, Kitabgi P (1986) Purification and characterization of a novel neurotensin-degrading peptidase from rat brain synaptic membranes. J Biol Chem 261:11274–11281PubMedGoogle Scholar
  17. Checler F, Ahmad S, Kostka P, Barelli H, Kitabgi P, Fox JET, Kwan CY, Daniel EE, Vincent JP (1987a) Peptidases in dog-ileum circular and longitudinal smooth muscle plasma membranes. Eur J Biochem 166:461–468PubMedCrossRefGoogle Scholar
  18. Checler F, Barelli H, Kwan CY, Kitabgi P, Vincent JP (1987b) Neurotensin-metabolizing peptidases in rat fundus plasma membranes. J Neurochem 49:507–512PubMedCrossRefGoogle Scholar
  19. Checler F, Kostolanska B, Fox JA (1988) In vivo inactivation of neurotensin in dog ileum: major involvement of endopeptidase 24.11. J Pharmacol Exp Ther 244:1040–1043PubMedGoogle Scholar
  20. Chipkin RE, Berger JG, Billard W, Lorio IC, Chapman R, Barnett A (1988) Pharmacology of SCH 34826, an orally active enkephalinase inhibitor analgesic. J Pharmacol Exp Ther 245:829–838PubMedGoogle Scholar
  21. Chu TG, Orlowski M (1984) Active-site directed N-carboxymethyl peptide inhibitors of a soluble metalloendopeptidase from rat brain. Biochemistry 23:3598–3603PubMedCrossRefGoogle Scholar
  22. Churchill L, Bausback HH, Gerritsen ME, Ward PE (1987) Metabolism of opioid peptides by cerebral microvascular aminopeptidase M. Biochim Biophys Acta 923:35–41PubMedCrossRefGoogle Scholar
  23. Conlon JM, Sheehan L (1983) Conversion of substance P to C-terminal fragments in human plasma. Regul Pept 7:335–345PubMedCrossRefGoogle Scholar
  24. Danielsen EM, Vyas JP, Kenny AJ (1980) A neutral endopeptidase in the micro villar membrane of pig intestine. Biochem J 191:645–648PubMedGoogle Scholar
  25. Defendini R, Zimmerman EA, Weare JA, Alhenc-Gelas F, Erdos EG (1982) Hydrolysis of enkephalins by human converting enzyme and localization of the enzyme in neuronal components of the brain. In: Costa E, Trabucchi M (eds) Regulatory peptides: from molecular biology to function. Raven, New York, pp 271–280Google Scholar
  26. De la Baume S, Yi CC, Schwartz JC, Chaillet P, Marcais-Collado H, Costentin J (1983) Participation of both “enkephalinase” and aminopeptidase activities in the metabolism of endogenous enkephalins. Neuroscience 8:143–151PubMedCrossRefGoogle Scholar
  27. Deschodt-Lanckman M, Pauwels S, Najdovski T, Dimaline R, Dockray GJ (1988) In vitro and in vivo degradation of human gastrin by endopeptidase 24.11. Gastroenterology 94:712–21PubMedGoogle Scholar
  28. Devault A, Lazure C, Nault C, Le Moual H, Scidah NG, Chretein M, Kahn P, Powell J, Mallet J, Beaumont A, Roques BP, Crine P, Boileau G (1987) Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA. EMBO J 6:1317–1322PubMedGoogle Scholar
  29. Devault A, Nault C, Zollinger M, Fournie-Zaluski MC, Roques B, Crine P, Boileau G (1988a) Expression of neutral endopeptidase (enkephalinase) in heterologous COS-1 cells. J Biol Chem 263:4033–4040PubMedGoogle Scholar
  30. Devault A, Sales V, Nault G, Beaumont A, Roques B, Crine P, Boileau G (1988b) Exploration of the catalytic site of endopeptidase 24.11 by site-directed mutagenesis. Histidine residues 583 and 587 are essential for catalysis. FEBS Lett 231:54–58PubMedCrossRefGoogle Scholar
  31. Djokic TD, Sekizawa K, Borson DB, Nadel JA (1989) Neutral endopeptidase inhibitors potentiate substance P-induced contraction in gut smooth muscle. Am J Physiol 256:G39–G43PubMedGoogle Scholar
  32. Dockray GJ, Gregory RA, Tracy HJ, Zhu WY (1982) Postsecretory processing of heptadecapeptide gastrin: conversion to C-terminal immunoreactive fragments in the circulation of the dog. Gastroenterology 83:224–232PubMedGoogle Scholar
  33. Erdos EG (1987) The angiotensin I-converting enzyme. Lab Invest 56:345–348PubMedGoogle Scholar
  34. Erdos EG, Skidgel RA (1989) Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J 3:145–151PubMedGoogle Scholar
  35. Ferris CF, Carraway RE, Hammer RA, Leeman SE (1985) Release and degradation of neurotensin during perfusion of rat small intestine with lipid. Regul Pept 12:101–111PubMedCrossRefGoogle Scholar
  36. Fulcher IS, Matsas R, Turner AJ, Kenny A J (1982) Effect of inhibitors of kidney neutral endopeptidase and enkephalin hydrolysis by synaptic membranes. Biochem J 203:519–522PubMedGoogle Scholar
  37. Fulcher IS, Chaplin MF, Kenny AJ (1983) Endopeptidase-24.11 purified from pig intestine is differently glycosylated from that in kidney. Biochem J 215:317–323PubMedGoogle Scholar
  38. Geary LE, Wiley KS, Scott WL, Cohen ML (1982) Degradation of exogenous enkephalin in the guinea-pig ileum: relative importance of aminopeptidase, enkephalinase and angiotensin converting enzyme activity. J Pharmacol Exp Ther 221:104–111PubMedGoogle Scholar
  39. Gee NS, Kenny AJ (1987) Proteins of the kidney micro villar membrane. Enzymic and molecular properties of aminopeptidase W. Biochem J 246:97–102PubMedGoogle Scholar
  40. Gee NS, Matsas R, Kenny AJ (1983) A monoclonal antibody to kidney endopeptidase-24.11. Biochem J 214:377–386PubMedGoogle Scholar
  41. Giros B, Gros C, Solhonne B, Schwartz B (1985) Characterization of amino-peptidases responsible for inactivating endogenous [Met5] enkephalin in brain slices using peptidase inhibitors and anti-aminopeptidase M antibodies. Mol Pharmacol 29:281–287Google Scholar
  42. Goetzel EJ, Sreedharan SP, Turck CW, Bridenbaugh R, Malfroy B (1989) Preferential cleavage of amino- and carboxyl-terminal oligopeptides from vasoactive intestinal polypeptide by human recombinant enkephalinase (neutral endopeptidase, EC Biochem Biophys Res Commun 158:850–854CrossRefGoogle Scholar
  43. Gossrau R (1979) Peptidasen II. Zur Lokalisation der Dipeptidylpeptidase IV (DPP IV). Histochemische und biochemische Untersuchung. Histochemistry 60:231–248PubMedCrossRefGoogle Scholar
  44. Graf L, Paldi A, Patthy A (1985) Action of neutral metalloendopeptidase (“enkephalinase”) on β-endorphin. Neuropeptides 6:13–19PubMedCrossRefGoogle Scholar
  45. Gray GM, Santiago NA (1977) Intestinal surface amino-oligopeptidases. I. Isolation of two weight isomers and their subunits from rat brush border. J Biol Chem 252:4922–4928PubMedGoogle Scholar
  46. Hammer RA, Carraway RE, Leeman SE (1982) Elevation of plasma neurotensin-like immunoreactivity after a meal. J Clin Invest 70:74–81PubMedCrossRefGoogle Scholar
  47. Harbeck HT, Mentlein R (1991) Aminopeptidase P from rat brain. Purification and action on bioactive peptides. Eur J Biochem 198:451–458PubMedCrossRefGoogle Scholar
  48. Hazato T, Shimamura M, Kase R, Iijima M, Katayama T (1985) Separation of enkephalin-degrading enzymes from longitudinal muscle layer of bovine small intestine. Biochem Pharmacol 34:3179–3183PubMedCrossRefGoogle Scholar
  49. Hooper NM, Turner AJ (1985) Neurokinin B is hydrolysed by synaptic membranes and by endopeptidase-24.11 (“enkephalinase”) but not by angiotensin converting enzyme. FEBS Lett 190:133–136PubMedCrossRefGoogle Scholar
  50. Hooper NM, Turner AJ (1987) Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J 241:625–633PubMedGoogle Scholar
  51. Hooper NM, Turner AJ (1988) Ectoenzymes of the kidney microvillar membrane. Aminopeptidase P is anchored by a glycosyl-phosphatidylinositol moiety. FEBS Lett 229:340–344PubMedCrossRefGoogle Scholar
  52. Hooper NM, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides. Neurokinin A (substance K) is a substrate for endopeptidase-24.11 but not for peptidyl dipeptidase A (angiotensin-converting enzyme). Biochem J 231: 357–361PubMedGoogle Scholar
  53. Hooper NM, Hyrszko J, Turner AJ (1990) Purification and characterization of pig kidney aminopeptidase P — a glycosyl-phosphatidylinositol-anchored ectoenzyme. Biochem J 267:509–515PubMedGoogle Scholar
  54. Jensen RT, Lemp GF, Gardiner JD (1980) Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells. Proc Natl Acad Sci USA 77:2079–2083PubMedCrossRefGoogle Scholar
  55. Kato H, Suzuki T (1971) Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffi. Isolation of five bradykinin potentiators and the amino acid sequence of two of them, potentiators B and C. Biochemistry 10:972–980PubMedCrossRefGoogle Scholar
  56. Kato T, Nagatsu T, Fukasawa K, Harada M, Nagatsu I, Sakakibara S (1978) Successive cleavage of N-terminal Arg1-Pro2 and Lys3-Pro4 from substance P but no release of Arg1-Pro2 from bradykinin by X-Pro dipeptidyl aminopeptidase. Biochim Biophys Acta 525:417–422PubMedGoogle Scholar
  57. Kenny AJ, Booth AG, George SG, Ingram J, Kershaw D, Wood EJ, Young AR (1976) Dipeptidyl peptidase IV, a kidney brush-border serine peptidase. Biochem J 155:169–182Google Scholar
  58. Kohama Y, Matsumoto S, Oka H, Teramoto T, Okabe M, Mimura T (1988) Isolation of angiotensin-converting enzyme inhibitor from tuna muscle. Biochem Biophys Res Commun 155:332–337PubMedCrossRefGoogle Scholar
  59. Lasch J, Koelsch R, Steinmetzer T, Neumann U, Demuth HU (1988) Enzymic properties of intestinal aminopeptidase P: a new continuous assay. FEBS Lett 227:171–174PubMedCrossRefGoogle Scholar
  60. Malfroy B, Schofeld PR, Kuang WJ, Seeburg PH, Mason AJ, Henzel WJ (1987) Molecular cloning and amino acid sequence of rat enkephalinase. Biochem Biophys Res Commun 144:59–66PubMedCrossRefGoogle Scholar
  61. Malfroy B, Kuang WJ, Seeburg PH, Mason AJ, Schofield PR (1988) Molecular cloning and amino acid sequence of human enkephalinase (neutral endo-peptidase). FEBS Lett 229:206–210PubMedCrossRefGoogle Scholar
  62. Matsas R, Fulcher IS, Kenny AJ, Turner AJ (1983) Substance P and [Leu5]-enkephalin are hydrolysed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci USA 80:3111–3115PubMedCrossRefGoogle Scholar
  63. Matsas R, Kenny AJ, Turner AJ (1984a) The metabolism of neuropeptides. The hydrolysis of peptides, including enkephalins, tachykinins and their analogues, by endopeptidase-24.11. Biochem J 223:433–440PubMedGoogle Scholar
  64. Matsas R, Turner AJ, Kenny AJ (1984b) Endopeptidase-24.11 and aminopeptidase activity in brain synaptic membranes are jointly responsible for the hydrolysis of cholecystokinin octapeptide (CCK-8). FEBS Lett 175:124–128PubMedCrossRefGoogle Scholar
  65. Matsas R, Stephenson SL, Hryszko J, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides. Phase separation of synaptic membrane preparations with Triton X-114 reveals the presence of aminopeptidase N. Biochem J 231:445–449Google Scholar
  66. McMartin C, Purdon G (1978) Early fate of somatostatin in the circulation of the rat after intravenous injection. J Endocrinol 77:67–74CrossRefGoogle Scholar
  67. Molineaux CJ, Lasdun A, Michaud C, Orlowski M (1988) Endopeptidase-24.15 is the primary enzyme that degrades luteinizing hormone releasing hormone both in vitro and in vivo. J Neurochem 51:624–633PubMedCrossRefGoogle Scholar
  68. Najdovski T, Collette N, Deschodt-Lankman M (1985) Hydrolysis of the C-terminal octapeptide of cholecystokinin by rat kidney membranes: characterization of the cleavage by solubilized endopeptidase-24.11. Life Sci 37:827–834PubMedCrossRefGoogle Scholar
  69. Nau R, Schafer G, Conlon JM (1985) Proteolytic inactivation of substance P in the epithelial layer of the intestine. Biochem Pharmacol 34:4019–4023PubMedCrossRefGoogle Scholar
  70. Nau R, Schafer G, Deacon CF, Cole T, Agoston DV, Conlon JM (1986) Proteolytic inactivation of substance P and neurokinin A in the longitudinal muscle layer of guinea pig small intestine. J Neurochem 47:856–864PubMedCrossRefGoogle Scholar
  71. Nau R, Ballmann M, Conlon JM (1987) Binding of vasoactive intestinal polypeptide to dispersed enterocytes results in rapid removal of the NH2-terminal histidyl residue. Mol Cell Endocrinol 52:97–103PubMedCrossRefGoogle Scholar
  72. Orloff MS, Turner AJ, Bunnett NW (1986) Catabolism of substance P and neurotensin in the rat stomach wall is susceptible to inhibitors of angiotensin converting enzyme. Regul Pept 14:21–31PubMedCrossRefGoogle Scholar
  73. Orlowski M, Michaud C, Chu T (1983) A soluble metallopeptidase from rat brain. Purification of the enzyme and determination of specificity with synthetic and natural peptides. Eur J Biochem 135:81–88PubMedCrossRefGoogle Scholar
  74. Orlowski M, Michaud C, Molineaux CJ (1988) Substrate-related potent inhibitors of brain metalloendopeptidase. Biochemistry 27:597–602PubMedCrossRefGoogle Scholar
  75. Palmieri FE, Ward PE (1983) Mesentery vascular metabolism of substance P. Biochim Biophys Acta 755:522–525PubMedCrossRefGoogle Scholar
  76. Palmieri FE, Petrelli JJ, Ward PE (1985) Vascular, plasma membrane amino-peptidase M. Metabolism of vasoactive peptides. Biochem Pharmacol 34:2309–2317PubMedCrossRefGoogle Scholar
  77. Peters GE, McMartin C (1982) The breakdown of somatostatin in rat intestinal juice. Scand J Gastroenterol 18 Suppl 82:215–217Google Scholar
  78. Power DM, Bunnett N, Dimaline R (1986) Chromatographic and immunochemical studies on postsecretory processing of gastrin in the pig. Am J Physiol 251:G300–G307PubMedGoogle Scholar
  79. Power DM, Bunnett N, Turner AJ, Dimaline R (1987) Degradation of endogenous heptadecapeptide gastrin by endopeptidase 24.11 in the pig. Am J Physiol 253:G33–G39PubMedGoogle Scholar
  80. Power DM, Dimaline R, Balaspiri L, Dockray GJ (1988) A novel gastrin-processing pathway in mammalian antrum. Biochim Biophys Acta 954:141–147PubMedCrossRefGoogle Scholar
  81. Praissman M, Fara JW, Praissman LA, Berkowitz JM (1982) Preparation of an N-acetyl-octapeptide of cholecystokinin. The role of N-acetylation in protecting the octapeptide from degradation by smooth muscle tissues. Biochim Biophys Acta 716:240–248PubMedCrossRefGoogle Scholar
  82. Rao RK (1991) Biologically active peptides in the gastrointestinal lumen. Life Sci 48:1685–1704PubMedCrossRefGoogle Scholar
  83. Rhoden KJ, Barnes PJ (1989) Epithelial modulation of non-adrenergic, non-cholinergic and vasoactive intestinal peptide-induced responses: role of neutral endopeptidase. Eur J Pharmacol 171:247–250PubMedCrossRefGoogle Scholar
  84. Roques BP, Beaumont A (1990) Neutral endopeptidase-24.11 inhibitors: from analgesics to antihypertensives. Trends Pharmacol Sci 11:245–249PubMedCrossRefGoogle Scholar
  85. Sakurada C, Yokosawa H, Ishii SI (1990) The degradation of somatostatin by synaptic membrane of rat hippocampus is initiated by endopeptidase-24.11. Peptides 11:287–292PubMedCrossRefGoogle Scholar
  86. Schafer G, Nau R, Cole T, Conlon JM (1986a) Specific binding and proteolytic inactivation of bradykinin by membrane vesicles from pig intestinal smooth muscle. Biochem Pharmacol 35:3719–3725PubMedCrossRefGoogle Scholar
  87. Schafer G, Richter G, Conlon JM (1986b) Conversion of somatostatin-28 to somatostatin-14 during maturation of epithelial cells in the porcine jejunum. Biochim Biphys Acta 885:240–247CrossRefGoogle Scholar
  88. Shulkes A, Fletcher DR, Hardy KJ (1983) Organ and plasma metabolism of neurotensin in sheep. Am J Physiol 245:E457–E462PubMedGoogle Scholar
  89. Schultzberg M, Hokfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Elde R, Goldstein M, Said S (1980) Distribution of peptide- and cateeholamine-containing neurons in the gastro-intestinal tract of rat and guinea-pig: immuno-histochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine β-hydroxylase. Neuroscience 5:689–744PubMedCrossRefGoogle Scholar
  90. Shaw C, Goke R, Bunnett NW, Conlon JM (1987) Catabolism of neurotensin in the epithelial layer of porcine small intestine. Biochim Biophys Acta 924:167–174PubMedCrossRefGoogle Scholar
  91. Skidgel RA, Engelbrecht S, Johnson AR, Erdos EG (1984) Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5:769–776PubMedCrossRefGoogle Scholar
  92. Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P (1988) Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 85:9386–9390PubMedCrossRefGoogle Scholar
  93. Strittmatter SM, Thiele EA, Kapiloff MS, Snyder SH (1985) A rat brain isozyme of angiotensin-converting enzyme. Unique specificity for amidated peptide substrates. J Biol Chem 260:9825–9832PubMedGoogle Scholar
  94. Terashima H, Rossen AP, Bunnett NW (1991) Purification and characterization of aminopeptidase M from intestinal muscle and mucosa. Gastroenterology 100:A670Google Scholar
  95. Thiele EA, Strittmatter SM, Snyder SH (1985) Substance K and substance P as possible endogenous substrates of angiotensin converting enzyme in the brain. Biochem Biophys Res Commun 128:317–324PubMedCrossRefGoogle Scholar
  96. Turkelson CM, Solomon TE, Hamilton J (1990) A cholecystokinin-metabolizing enzyme in rat intestine. Peptides 11:213–219PubMedCrossRefGoogle Scholar
  97. Turner AJ, Matsas R, Kenny AJ (1985) Are there neuropeptide-specific peptidases? Biochem Pharmacol 34:1347–1356PubMedCrossRefGoogle Scholar
  98. Turzynski, Mentlein R (1990) Prolyl aminopeptidase from rat brain and kidney. Action on peptides and identification as leucyl aminopeptidase. Eur J Biochem 190:509–515PubMedCrossRefGoogle Scholar
  99. Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T (1976) Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot (Tokyo) 29:97–99Google Scholar
  100. Ward PE, Sheridan MA, Hammon KJ, Erdos EG (1980) Angiotensin I converting enzyme (kininase II) of the brush border of the human and swine intestine. Biochem Pharmacol 29:1525–1529PubMedCrossRefGoogle Scholar
  101. Weber M, Cole T, Conlon JM (1986) Specific binding and degradation of somatostatin by membrane vesicles from pig gut. Am J Physiol 250:G679–G685PubMedGoogle Scholar
  102. Wei L, Alhenc-Gelas F, Soubrier F, Michaud A, Corvol P, Clauser E (1991) Expression and characterization of recombinant human angiotensin I-converting enzyme. J Biol Chem 266:5540–5546PubMedGoogle Scholar
  103. Wyvratt MJ, Tischler MH, Ikeler TJ, Springer JP, Tristam EW, Patchett AA (1983) Bicyclic inhibitors of angiotensin-converting enzyme. In: Hruby VJ, Rich DH (eds) Peptides: structure and function. Pierce Chemical, New York, pp 551–554Google Scholar
  104. Yokosawa H, Ogura Y, Ishii SI (1983) Purification and inhibition by neuropeptides of angiotensin-converting enzyme from rat brain. J Neurochem 41:403–410PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. M. Conlon

There are no affiliations available

Personalised recommendations