Skip to main content

Part of the book series: ESO Monographs ((ESO MONOGRAPHS))

  • 31 Accesses

Abstract

Host effector cell populations have received intensive scrutiny in the past decade as investigators have tried new modalities able to destroy tumour cells. A hormone originally called T-cell growth factor and now known as Interleukin-2 (IL-2) was noticed to be capable of inducing in vitro proliferation of these cells. These IL-2 responsive cells and others, such as LAK cells and NK cells, have been used in a multitude of approaches in an attempt to generate antitumour responses in the host [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forni G, and Giovarelli M., Strategies for cell- mediated immunotherapy of cancer: Killing or help? Immunology Today 1986 (7) 202–203

    Article  Google Scholar 

  2. Thatcher N, Dazzu H, Johnson RJ, et al: Recombinant lnterleukin-2 given intrasplenically and intravenously for advanced malignant melanoma. A phase I and II study. Br J Cancer 1989 (60):770–774

    CAS  Google Scholar 

  3. Hercend T and Schmidt RE: Characteristics and uses of natural killer cells. Immunology Today 1988 (9):291–292

    Article  PubMed  CAS  Google Scholar 

  4. Rosenberg SA: Immunotherapy and gene therapy of cancer. Cancer Res 1991 (51):5074s–5079s

    Google Scholar 

  5. Lotze MT, Line BR, Mathisen DJ, and Rosenberg SA: The in vivo distribuition of autologous human and lymphoid cells grown in T cell growth factor (TCGF): Implications for the adoptive immunotherapyof tumors. J Immunol 1980 (125):1487–1493

    PubMed  CAS  Google Scholar 

  6. Rosenberg SA, Lotze MT, Muul MT et al: Special Report - Observation on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985 (313):1485–1492

    Article  PubMed  CAS  Google Scholar 

  7. Gilboa E: Retrovirus vectors and their use in molecular biology. Bioassay 1986 (5):252

    Google Scholar 

  8. Armentano D, Yu S-F, Kantoff PW, von Ruden T, Anderson WF and Gilboa E: Effect of internal viral sequences on the utility of retroviral vectors. J Virol 1987 (61):1647–1650

    PubMed  CAS  Google Scholar 

  9. Hantzopoulos PA, Sullenger BA, Lingers G, and Gilboa E: Improved gene expression upon transfer of the adenosine deaminase minigene outside the transcriptional unit of a retroviral vector. Proc Natl Acad Sci USA 1989 (86) :3519–3523

    Article  PubMed  CAS  Google Scholar 

  10. Oval J, Hershberg R, Gansbacher B, Gilboa E, Schlessinger J, and Taetle R: Expression of functional Epidermal Growth Factor Receptor in a human hematopoetic cell line. Cancer Res 1991 (51):150–156

    PubMed  CAS  Google Scholar 

  11. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, and Gilboa E: IL-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 1990 (172): 1217

    Article  PubMed  CAS  Google Scholar 

  12. Gansbacher B, Bannerji R, Zier K, Daniels B, Cronin K, and Gilboa E: Retroviral vector mediated IFN- gamma gene transfer into tumor cells generates a potent and long lasting anti-tumor response. Cancer Res 1990

    Google Scholar 

  13. Gansbacher B, Zier K and Golde D: Gene transfer induced constitutive secretion of IL-2 or IFN-gamma by irradiated human melanoma cells. 1991 (submitted)

    Google Scholar 

  14. Greenberg PD, Cheever MS, and Fefer A: Therapy of established tumors by adoptive transfer of T lymphocytes. In: Herberman RB (ed) Basic and Clinical Tumor Immunology. Martinus Nijhoff Publishers 1983 p 301

    Chapter  Google Scholar 

  15. Matis LA, Shu ES, Groves S: Adoptive immunotherapy of a syngeneic murine leukemia with a tumor-specific cytotoxic T cell clone and recombinant human interleukin2: correlation with clonal IL-2 receptor expression. J Immunol 1986 (136):3490

    Google Scholar 

  16. North RJ: Models of adoptive T-cell mediated regression of established tumors. Contemp Top Immunobiol 1984 (13):243

    Google Scholar 

  17. Rosenberg SA, Spiess P and Lafreniere R: A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986 (233): 1318

    Google Scholar 

  18. Rosenberg SA, Packard BS, Aebersold PM et al: Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. New Engl J Med 1988 (319): 1676

    Article  PubMed  CAS  Google Scholar 

  19. Alosco TR, Croy BA, Gansbacher B, Wang HQ, Rao U and Bankaert R: Tumor cells secreting IL2 stimulate a local anti-tumor response independent of functional B or T lymphocytes. J Exp Med 1992 (in press)

    Google Scholar 

  20. Miller RG: An immunological suppressor cell inactivating cytotoxic T-lymphocyte precursor cells recognizing it. Nature 1980 (287):544

    Article  PubMed  CAS  Google Scholar 

  21. Rammensee JG, Bevan JJ and Fink PJ: Antigen specific suppression of T-cell responses: the veto concept. Immunol Today 1985 (6):41

    Article  Google Scholar 

  22. North RJ: Radiation-induced, immunologically mediated regression of an established tumor as an example of successful therapeutic immunomanipulation. J Exp Med 1986 (164): 1652

    Google Scholar 

  23. Joly P, Guillon J-M, Mayaud et al: Cell-mediated suppression of HIV-specific cytotoxic T lymphocytes. J Immunol 1989 (143): 2193

    Google Scholar 

  24. Keshem B and Kedar E: Cytotoxic T lymphocytes reactive against a syngeneic murine tumor and their specific suppressor T cells are both elicited by in vitro allosensitization. J Exp Med 1990 (171): 1057

    Google Scholar 

  25. Eura MT, Maehara T, Ikawa T and Iskikawa T: Suppressor cells in the effector phase of autologous cytotoxic reactions in cancer patients. Cancer Immunol Immunother 1988 (27):147

    Google Scholar 

  26. Podack ER: The molecular mechanism of lymphocyte-mediated tumor cell lysis. Immunol Today 1985 (6):21

    Article  CAS  Google Scholar 

  27. Smyth MJ, Ortaldo JR, Shinkai YL: Interleukin 2 induction of pore-forming protein gene expression in human peripheral blood CD8 T cells. J Exp Med 1990 (171 ): 1269

    Google Scholar 

  28. Liu C-C, Joag SV, Kwon BS and Young JD-E: Induction of perforin and serine esterases in a murine cytotoxic T lymphocyte clone. J Immunol 1990 (144): 1196

    Google Scholar 

  29. Smyth, MJ, Ortaldo JR and Bere W: IL-2 and IL-6 synergize to augment the pore-forming protein gene expression and cytotoxic potential of human peripheral blood T cells. J Immunol 1990 (145): 1159

    Google Scholar 

  30. Barth RJ, Mule JJ, Spiess PJ, Rosenberg SA: Interferon gamma and tumor necrosis factor alpha have a role in tumor regression mediated by murine CD8 tumor infiltrating lymphocytes. J Exp Med 1991 (173):647–658

    Article  PubMed  CAS  Google Scholar 

  31. Schwartzentruber DJ, Topolian SN, Mancini M and Rosenberg SA: Specific release of granulocyte- macrophage colony stimulating factor, tumor necrosis factor-alpha, and interferon-gamma by human tumor infiltrating lymphocytes after autologous tumor stimulation. J Immunol 1991 (146):3674–3681

    Google Scholar 

  32. Nishihara K, Miyatake S, Sakata T, Yamashita J, Kikuchi H, Kawade Y, Zu Y, Namba Y, Hanaoka M, Watanabe Y: Augmentation of tumor targeting in a line of glioma-specific mouse cytotoxic T- lymphocytes by retroviral expression of mouse gamma-interferon complementary DNA. Cancer Res 1988 (48/17):4730–4735

    PubMed  CAS  Google Scholar 

  33. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL: Gene transfer into humans - immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. New Engl J Med 1990 (323):570–578

    Article  PubMed  CAS  Google Scholar 

  34. Kasid A, Morecki S, Aebersold P, Cornetta K, Culver K, Freeman S, Director E, Lotze MT, Blaese RM, Anderson WF: Human gene transfer: characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man. Proc Natl Acad Sci USA 1990(87) :473–477

    Article  PubMed  CAS  Google Scholar 

  35. Morecki S, Karson E, Cornetta K, Kasid A, Aebersold P, Blaese RM, Anderson WF, Rosenberg SA: Retrovirus-mediated gene transfer into CD4+ and CD8+ human T cell subsets derived from tumor- infiltrating lymphocytes and peripheral blood mononuclear cells. Cancer Immunol Immunother 1991 (32/6):342–352

    Article  Google Scholar 

  36. Tepper RI, Pattengale PK and Leder P: Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 1989 (57):503

    Google Scholar 

  37. Colombo MP, Ferrari G, Stoppacciaro A et al: Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 1991 (173):889

    Article  PubMed  CAS  Google Scholar 

  38. Wantanabe Y, Kuribayashi K, Miyatake S: Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci USA 1989 (86):9456

    Google Scholar 

  39. Fearon ER, Pardoll DM, Itaya T, et al: lnterleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990 (60):397

    Article  PubMed  CAS  Google Scholar 

  40. Russell SJ: Lymphokine gene therapy for cancer. Immunol Today 1990 (11):196

    Google Scholar 

  41. Russell SJ, Eccles SA, Flemming CL, Johnson CA, Collins MK: Decreased tumorigenicity of a transplantable rat sarcoma following transfer and expression of an IL-2 cDNA. Int J Cancer 1991 (47):244–251

    Article  PubMed  CAS  Google Scholar 

  42. Blankenstein T, Li WQ, Muller W, Diamantstein T: Retroviral interleukin 4 gene transfer into an interleukin 4-dependent cell line results in autocrine growth but not in tumorigenicity. Eur J Immunol 1990 (20/4):935–938

    Article  Google Scholar 

  43. Golumbek PT, Lazenby AT, Levitzky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM: Treatment of established renal cancer engineered to secrete lnterleukin-4. Science 1991 (254):713–716

    Article  PubMed  CAS  Google Scholar 

  44. Watanabe Y, Kuribayashi K, Miyatake S, Nishihara K, Nakayama E, Taniyama T, Sakata T: Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented tumor immunity. Proc Natl Acad Sci USA 1989 (86/23):9456–9460

    Article  Google Scholar 

  45. Watanabe Y, Sakata T: Highly efficient action of autocrine mouse interferon-gamma expressed via a retroviral vector. Eur J Immunol 1988 (18):1627–1630

    Article  PubMed  CAS  Google Scholar 

  46. Blankenstein T, Qin ZH, Uberla K, Müller W, Roser H, Volk HD, Diamantstein T: Tumor suppression after tumor cell-targeted tumor necrosis factor alpha gene transfer. J Exp Med. 1991(173):1047–1052

    Article  PubMed  CAS  Google Scholar 

  47. Asher AL, Mule JJ, Kasid A, Restifo NP, Salo JC, Reichert CM, Jaffe G, Fendly B, Kriegler M, and Rosenberg SA: Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. J Immunol 1991 (146): 3227–3234

    Google Scholar 

  48. Blankenstein T, Li WQ, Uberla K, Qin ZH, Tominaga A, Takatsu K, Yamaguchi N, Diamantstein T: Retroviral interleukin 5 gene transfer into interleukin 5-dependent growing cell lines results in autocrine 51 growth and tumorigenicity. Eur J Immunol 1990 (20):2699–2705

    Google Scholar 

  49. Scala G, Quinto I, Ruocco MR, Arcucci A, Maliardo M, Carette P, Forni G and Venuta S: Expression of 52 an exogenous Interleukin 6 gene in human Epstein Barr virus B cells confers growth advantage and in vivo tumorigenicity. J Exp Med 1990 (172):61–68

    Article  PubMed  CAS  Google Scholar 

  50. Suematsu S, Matsuda T, Aozasa K, Akira N, Nakano N, Ohno S, Miyazaki J, Yamamura K, Hirano T, Kishimoto T: lgG1 plasmacytosis in Interleukin 6 transgenic mice. Proc Natl Acad Sci USA 1989 (86):7547

    Google Scholar 

  51. Crowley NJ, Slinghuff CL, Darrow TL, Siegler HF: Generation of human autologous tumor specific cytotoxic T cells using HLA-A2 mathced allogenic melanoma. Cancer Res 1990 (50):492

    Google Scholar 

  52. Crowley NJ, Darrow TL, Quinn-Allen MA et al: MHC- restricted recognition of autologous melanoma by tumor-specific cytotoxic T cells. Evidence for restriction by a dominant HLA-A allele. J Immunol 1991 (146):1692–1699

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gansbacher, B. (1992). Cytokine Gene Therapy of Cancer. In: Mertelsmann, R. (eds) Lymphohaematopoietic Growth Factors in Cancer Therapy II. ESO Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77801-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77801-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77803-2

  • Online ISBN: 978-3-642-77801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics