Skip to main content

Natural Killer Cells and Interleukin-2-Activated Killer Cells

  • Conference paper
Lymphohaematopoietic Growth Factors in Cancer Therapy II

Part of the book series: ESO Monographs ((ESO MONOGRAPHS))

Abstract

Lymphocytes from healthy individuals are able to kill certain tumour cells and immature haematopoietic cells in vitro spontaneously. This type of cytotoxicity was described some years ago as “natural cytotoxicity” because it was present spontaneously in normal individuals and was independent of histocompatibility complex (MHC) [1,2]. The principal effectors of natural cytotoxicity have been identified morphologically as large granular lymphocytes (LGL) and functionally as natural killer (NK) cells [3,4]. It soon became clear, however, that LGL may be a heterogeneous population consisting of not only NK cells, but also activated T cells [5]. In response to exogenous activation stimuli, e.g., Interleukin-2 (IL-2), some T lymphocytes as well as NK cells increase in size, becoming more granular, and acquire the ability to bind to and kill a wide spectrum of tumour cells, virally infected cells, and even some normal tissue cells [6]. Such IL-2-activated effector cells have been referred to operationally as lymphokine-activated killer (LAK) cells [7]. In studies using blood from normal human donors, the phenomena of NK and LAK activities were shown to be closely related because NK cells are the predominant precursors of LAK cells [8]. However, in some cancer patients or for cells from other organs, LAK cells may consist of both NK and T cells at various stages of activation and in various proportions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Herberman RB and Holden HT: Natural cell- mediated immunity. Adv Cancer Res 1978 (27):305–377

    Article  PubMed  CAS  Google Scholar 

  2. West WH, Cannon GB, Kay HD et al: Natural 18 cytotoxic reactivity of human lymphocytes against a myeloid cell line: Characterization of the effector cells. J Immunol 1977 (118):355–361

    PubMed  CAS  Google Scholar 

  3. Abo T, Miller CA, Balch CM: Characterization of human granular lymphocyte subpopulations 19 expressing NHK-1 (Leu-7 and Leu-11) antigens in the blood and lymphoid tissues from fetuses, neonates and adults. Eur J Immunol 1984 (1 ):616–623

    Article  Google Scholar 

  4. Levy S, Herberman R, Maluish A et al: Prognostic 21 risk assessment in primary breast cancer by behavioral and immunological parameters. Health Psychol 1985 (4):99–113

    Article  PubMed  CAS  Google Scholar 

  5. Schmidt RE, Murray C, Daley et al: A subset of 22 natural killer cells in peripheral blood displays immature T cell phenotype. J Exp Med 1986 (164) :351–356

    Article  PubMed  CAS  Google Scholar 

  6. Trinchieri G, Matsumoto-Kobayashi M, Clark SC et 23 al: Response of resting human peripheral blood natural killer cells to interleukin-2. J Exp Med 1984 (160):1147–24

    Google Scholar 

  7. Grimm EA, Mazumder A, Zhang HZ et al: Lymphokine activated killer cell phenomenum. I. Lysis of natural killer resistant fresh solid tumor cells by interleukin-2 activated autologous human peripheral blood lymphocytes. J Exp Med 1982 25 (155): 1823–1841

    Article  Google Scholar 

  8. Ortaldo JR, Manson A, Overton R: Lymphokine- activated killer cells: Analysis of progenitors and effectors. J Exp Med 1986 (164):1193–1205

    Google Scholar 

  9. Lanier LL, Cwirla S, Federspiel N: Human natural killer cells isolated from peripheral blood do not rearrange T cell antigen receptor beta chain genes. J Exp Med 1986 (163):209–214

    Article  PubMed  CAS  Google Scholar 

  10. Anderson T, Caligiuri M, Ritz J: CD3- natural 27 killer cells express zeta TCR as part of a novel molecular complex. Nature 1989 (341 ):159–162

    Google Scholar 

  11. Lanier LL, Yu G, Phillips JH: Co-association of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 1989 (342):803–805

    Article  PubMed  CAS  Google Scholar 

  12. Anegon I, Cuturi MC, Trinchieri G: Interaction of Fc receptors (CD16) ligands induces transription of interleukin 2 receptor (CD25) and lymphokine genes in expression of their products in human natural killer cells. J Exp Med 1988 (167):452–472

    Google Scholar 

  13. Phillips JH, Takeshita T, Sugamura K et al: Activation of natural killer cells via the p75 interleukin-2 receptor. J Exp Med 1989 (170):291–296

    Article  PubMed  CAS  Google Scholar 

  14. Siegel JP, Sharon M, Smith PL: The IL-2 30 receptor beta chain (p70): Role in mediating signals for LAK, NK and proliferative activities. Science1987 (238):75–78

    Google Scholar 

  15. Trinchieri G: Biology of natural killer cells. Adv 31 Immunol 1989 (47):187–376

    Article  CAS  Google Scholar 

  16. Lanier LL, Le AM, Civin CI: The relationship of CD16 Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells in cytotoxic lymphocytes. J Immunol 1986 (136):4480–4486

    Google Scholar 

  17. Schubert J, Heiken H, Jacobs R et al: A subset of CD16- natural killer cells without antibody- dependent cellular cytotoxicity function. Nat Immun Cell Growth Regul 1990 (9): 103–111

    PubMed  CAS  Google Scholar 

  18. Kasahara T, Djeu JY, Dougherty SF: Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: Interleukin-2, interferon, and colony stimulating factors. J Immunol 1983 (131) 2379–2385

    Google Scholar 

  19. Pistoia V, Corcione A, Zupo S et al: Human natural killer cells and hematopoiesis. J Immunol Res 1989 (1):143–149

    Google Scholar 

  20. Janeway CA: Natural killer cells. A primitive immune system. Nature 1989 (341):108

    Google Scholar 

  21. Moretta A, Ciccone E, Pantaleo G et al: Surface molecules involved in the activation and regulation of T or natural killer lymphocytes in humans. Immunol Rev 1989 (111 ):146–175

    Article  Google Scholar 

  22. Lanier LL, Ruitenberg JJ, Phillips JH: Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 1988 (141):3478–3485

    Google Scholar 

  23. Perussia B, Trinchieri G: Structure and function of NK cell Fc receptor. EOS J Immunol Immunopharmacol 1988 (8):147–150

    CAS  Google Scholar 

  24. Grimm EA, Ramsey KM, Mazumder A: Lymphokine activated killer cell phenonemum. II. The precursor cells are serologically distinct from peripheral T lymphocytes, memory CTL and NK cells. J Exp Med 1983 (157):884–897

    Google Scholar 

  25. Damle NK, Doyle LV, Bradley EC: lnterleukin-2-activated human killer cells are derived from phenotypically heterogeneous precursors. J Immunol 1986 (137):2814–2822

    PubMed  CAS  Google Scholar 

  26. Herberman RB, Hiserodt JC, Vujanovic NK: Lymphokine-activated killer cell activity: Characteristics of effector cells and their progenitors in blood and spleen. Immunol Today 1987 (8):178–181

    Google Scholar 

  27. Phillips J, Lanier L: Dissection of the lymphokine- activated killer phenomenon: Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med 1986 (164):814–825

    Article  PubMed  CAS  Google Scholar 

  28. Itoh K, Tilden AB, Kumagai K: Leu-11 + lymphocytes with natural killer activity are precursors of recombinant interleukin-2 (RIL-2) induced activated killer cells. J Immunol 1985 (134):802–807

    Google Scholar 

  29. Morris DB, Pross HF: Studies on lymphokine- activated killer cells. Evidence using novel monoclonal antibodies that most human LAK precursor cells share a common surface marker. J Exp Med 1989 (169) :717–736

    Article  PubMed  CAS  Google Scholar 

  30. Denegri JF, Peterson J, Tilley P: Interleukin-2 (RIL- 2)-induced lymphokine-activated killer (LAK) cells and their precursors express the VC01 antigen. J Clin Immunol 1989 (9):362–367

    Google Scholar 

  31. Zocchi MR, Bottino C, Ferrini S et al: A novel 120-kd surface antigen expressed by a subset of human lymphocytes. Evidence that lymphokine-activated killer cells express this molecule and use it in their effector function. J Exp Med 1987 (166):319–326

    Article  PubMed  CAS  Google Scholar 

  32. Lanier LL, Kipps TJ, Phillips JH: Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CD16/Leu-11 antigen). J Exp Med 1985 (162):2089–2106

    Google Scholar 

  33. Shau H, Golub SH: Depletion of NK cells with the lysosomotrophic agent L-leucine methyl ester and the in vitro generation of NK activity from NK precursor cells. J Immunol 1985 (143):1136–1141

    Google Scholar 

  34. Melder RJ, Whiteside TL, Vujanovic NL: A new approach to generating antitumor effectors for adoptive immunotherapy using human adherent lymphokine activated killer cells. Cancer Res 1988 (48):3461–3469

    Google Scholar 

  35. Herberman RB: Natural killer cell activity and antibody-dependent cell-mediated cytotoxicity. In: Rose N and Friedman H (eds) Manual of Clinical Immunopathology. ASM Publications, Washington, DC, 1985 pp 308–314

    Google Scholar 

  36. Whiteside TL, Herberman RB: The role of natural killer cells in human disease. Clin Immunol Immunopathol 1989 (53):1–23

    Google Scholar 

  37. Pross HF, Baines MT, Rubin P et al: Spontaneous human lymphocyte mediated cytotoxicity against tumor target cells. IX. The quantitation of natural killer cell activity. J Clin Immunol 1981 (1):51–63

    Article  PubMed  CAS  Google Scholar 

  38. Bryant J, Day R, Whiteside T, Herberman R: Calculation of lytic units for the epxression of cell- mediated cytotoxicity. J immunol Methods 1992 (146):91–103

    Google Scholar 

  39. Whiteside TL, Bryant J, Day R et al: Natural killer cytotoxicity in the diagnosis of immuno dysfunction: Criteria for a reproducible assay. J Clin Lab Anal 1990 (2):102–114

    Article  Google Scholar 

  40. Sulica A, Gherman M, Galatiuc C: Inhibition of human natural killer cell activity by cytophilic immunoglobulin G. J Immunol 1982 (128):1031–1036

    Google Scholar 

  41. Herberman RB, Ortaldo JR: Natural killer cells: Their role in defense against disease. Science 1981 (214):24–30

    Article  PubMed  CAS  Google Scholar 

  42. Kay NE: Natural killer cells. CRC Crit Rev Clin Lab Sci 1986 (22):343–359

    Article  CAS  Google Scholar 

  43. Balch CM, Tilden AB, Dougherty PA: Depressed levels of granular lymphocytes with natural killer (NK) cell function in 247 cancer patients. Ann Surg 1983 (198):192–199

    Google Scholar 

  44. Eby N, Grufferman S, Huang M et al: Natural killer cell activity in the chronic fatigue-immune dysfunction syndrome. In: Ades E W and Lopez C (eds) Natural Killer Cells and Host Defense. Karger, Basel 1988 pp 141–145

    Google Scholar 

  45. Whiteside TL, Heo DS, Chen K et al: Expansion of tumor-infiltrating lymphocytes from human solid tumors in interleukin-2. In: Truitt RL, Gale RP and Bortin MM (eds) Cellular Immunotherapy of Cancer. Alan Liss, New York 1987 pp 213–222

    Google Scholar 

  46. Heo DS, Whiteside TL, Johnson JT, Chen K, Barnes EL, Herberman RB: Long-term interleukin 2- dependent growth in cytotoxic activity of tumor- infiltrating lymphocytes (TIL) from human squamous cell carcinomas of the head and neck. Cancer Res 1987 (47):6353–6362

    Google Scholar 

  47. Schwarz RE, Iwatsuki S, Herberman RB: Lymphokine-activated killer cell activity in patients with primary and metastatic malignant liver tumors. Hepatology 1989 (10):221–227

    Google Scholar 

  48. Whiteside TL, Heo DS, Takagi S: Characterization of novel antitumor effector cells in long-term cultures of human tumor-infiltrating lymphocytes. Transplant Proc 1988 (20):347–350

    Google Scholar 

  49. Hata K, Zhang XR, Iwatsuki S, VanThiel DH, Herberman RB, Whiteside TL: Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clin Immunol Immunopathol 1990 (56):401–419

    Google Scholar 

  50. Henney CS, Kuribayashi K, Kern DE et al: lnterleukin-2 augments natural killer cell activity. Nature 1981 (291):335–338

    Article  PubMed  CAS  Google Scholar 

  51. Hercend T, Schmidt RE: Characteristics and uses of natural killer cells. Immunol Today 1988 (9):291–293

    Google Scholar 

  52. Ortaldo JR, Herberman RB: Heterogeneity of natural killer cells. Ann Rev Immunol 1984 (2):359–394

    Google Scholar 

  53. Trinchieri G, Perussia B: Human natural killer cells: Biologic and pathologic aspects. Lab Invest 1984 (50):489–513

    PubMed  CAS  Google Scholar 

  54. Wiltrout RH, Mathieson BJ, Talmadge JE et al: Augmentation of organ-associated natural killer activity by biological response modifiers. Isolation and characterization of large granular lymphocytes from the liver. J Exp Med 1984 (160):1431–1449

    CAS  Google Scholar 

  55. Herberman RB, Ortaldo JR, Bonnard GD: Augmentation by interferon of human natural and antibody dependent cell-mediated cytotoxicity. Nature 1979 (277):221–223

    Article  PubMed  CAS  Google Scholar 

  56. Findley HW Jr, Nasr S, Afify Z et al: Effects of recombinant interferon gamma and interleukin 2 on the generation of lymphokine-activated killer cells in vitro. Cancer Invest 1992

    Google Scholar 

  57. Maluish AE, Ortaldo JR, Conlon JC: Depression of natural killer cytotoxicity after in vivo administration of recombinant leukocyte interferon. J Immunol 1983 (131):5030–5037

    Google Scholar 

  58. Werfel T, Uciechowski P, Tetteroop A: Activation of cloned natural killer cells by Fc gamma Rill. J Immunol 1989 (142):1102–1106

    Google Scholar 

  59. Timonen TT, Pakkanen R: Induction of large granular lymphocyte morphology in human peripheral blood mononuclear cells. J Immunol 1987 (138):2837–2842

    Google Scholar 

  60. Welsh RM: Regulation of virus infections by natural killer cells. Nat Immun Cell Growth Regul 1986 (5):169–199

    Google Scholar 

  61. Cosentino LM, Cathcard MK: A multi-step isolation scheme for obtaining CD16+ human natural killer cells. J Immunol Methods 1987 (103):195–204

    Google Scholar 

  62. Zarling JM, Clouse KA, Biddison WE et al: Phenotypes of human natural killer cell populations detected with monoclonal antibodies. J Immunol 1981 (127):2575–2580

    PubMed  CAS  Google Scholar 

  63. Lanier LL, Le AM, Phillips JH: Subpopulations of human natural killer cells defined by expression of Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol 1983 (131 ):1789–1796

    Google Scholar 

  64. Perussia B, Ramoni C, Anegon I et al: Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul 1987 (6):171–188

    PubMed  CAS  Google Scholar 

  65. Takagi S, Whiteside TL, Herberman RB: The growth-promoting effect of IL-2-activated lymphocytes on human natural killer ( NK) cells. FASEB J 1989 A364

    Google Scholar 

  66. Kobayashi M, Fitz L, Ryan M: Identification and purification of natural killer cell stimulatory factor (NKSF). J Exp Med 1989 (170):827–845

    Google Scholar 

  67. Peace DJ, Kern DE, Schultz KR et al: IL-4-induced lymphokine-activated killer cells: Lytic activity is mediated by phenotypically distinct natural killerlike and T cell-like large granular lymphocytes. J Immunol 1988 (140) 3679–3685

    PubMed  CAS  Google Scholar 

  68. Mule JJ, Smith KA, Rosenberg SA: lnterleukin-4 (B- cell stimulating factor-1) can mediate the induction of lymphokine-activated killer cell activity directly against fresh tumor cells. J Exp Med 1987 (166):792–804

    Google Scholar 

  69. Leibson PJ, Schoon RA: IL-3 and IL-4-dependent changes in human natural killer cell activation. In: Ades EW and Lopez C (eds) Natural Killer Cells and Host Defense. 5th International Killer Cell Workshop. Karger, Basel 1989 pp 64–68

    Google Scholar 

  70. Chouaib S, Bertoglio J, Blay JY: Generation of lymphokine-activated killer cells: Synergy between tumor necrosis factor and interleukin-2. Proc Natl Acad Sci USA 1988 (85):6875–6879

    Google Scholar 

  71. Owen-Schaub LB, Gutterman JU, Grimm EA: Effect of tumor necrosis factor alpha and IL-2 in the generation of human lymphokine-activated killer cell cytotoxicity. Cancer Res 1988 (48):788–792

    Google Scholar 

  72. Itoh K, Shiba K, Shimizu Y: Generation of activated killer (AK) cells by recombinant interleukin-2 (RIL-2) in collaboration with interferon (IFN). J Immunol 1985 (134):3124–3129

    Google Scholar 

  73. Ochoa AC, Giomo G, Alter RJ: Long-term growth of LAK cells: Role of anti-CD3, IL-1, interferon gamma and beta. J Immunol 1987 (138):2728–2732

    Google Scholar 

  74. Luger TA, Krutman N, Kirnbauer R et al: Interferon IFN-beta 1/IL-6 augments the activity of human natural killer cells. J Immunol 1989 (143):1206–1209

    PubMed  CAS  Google Scholar 

  75. Smith MJ, Ortaldo JR: Comparison of the effect of IL2 and IL6 on the lytic activity or purified human peripheral blood large granular lymphocytes. J Immunol 1991 (146): 1380

    Google Scholar 

  76. Iho S, Shau H, Golub SH: Characteristics of IL6- enhanced lymphokine-activated killer cell function. Cell Immunol 1991 (135):66

    Google Scholar 

  77. Habu S, Fukui H, Shimamura K et al: In vivo effects of anti-asialo GM-1. I. Reduction of NK activity and enhancement of transplanted growth in nude mice. J Immunol 1981 (127):34–38

    PubMed  CAS  Google Scholar 

  78. Mule JJ, Schwarz SL, Roberts AB: Transforming growth factor beta inhibits the generation of lymphokine-activated cells and cytotoxic T cells. Cancer Immunol Immunother 1988 (26):95–103

    Google Scholar 

  79. Ranges GE, Figari IS, Espevik T: Inhibition of cytotoxic T cell development by transforming growth factor beta and reversal by recombinant tumor necrosis factor alpha. J Exp Med 1987 (166):991–998

    Google Scholar 

  80. Rosenberg SA: Adoptive immunotherapy of cancer using lymphokine-activated killer cells and recombinant interleukin-2. In: DeVita V, Hellman S and Rosenberg SA (eds) Important Advances in Oncology. J.B. Lippincott, Philadelphia 1986 pp 55–91

    Google Scholar 

  81. Granelli-Piperno A: In situ hybridization for interleukin-2 and interleukin-2 receptor mRNA in T cells activated in the presence or absence of cyclosporin A. J Exp Med 1988 (168):1649–1658

    Google Scholar 

  82. Vujanovic NK, Herberman RB, Hiserodt JC: Lymphokine-activated killer cells in rats. III. A simple method for purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine-activated killer cells. J Exp Med 1988 (167):15–29

    Google Scholar 

  83. Vujanovic NL, Herberman RB, Maghazachi AA, Hiserodt JC: Lymphokine-activated killer cells in rat. III. A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine activated killer cells. J Exp Med 1988 (167):15–29

    Google Scholar 

  84. Melder RJ, Herberman RB, Whiteside TL: Regulation of cytolytic activity of fresh and IL-2- activated human natural killer cells by anti-CD16 monoclonal antibodies. In: Proceedings of the 6th International Natural Killer Cell Workshop, Goslon. Karger, Basel 1990

    Google Scholar 

  85. Melder RJ, Whiteside TL, Herberman RB: Morphology, ultrastructure and surface characteristics of human adherent lymphokine- activated killer (A-LAK) cells. J Leukocyte Biol 1990 (48):163–173

    Google Scholar 

  86. Melder RJ, Walker E, Herberman RB, Whiteside TL: Adhesion characteristics of human interleukin-2- activated natural killer cells. Cell Immunol 1991 (132):177–192

    Google Scholar 

  87. Sasaki A, Jain R, Melder RJ et al: Preferential localization of human A-LAK cells in tumor versus normal microcirculation. Annual Meeting of Society for Biological Therapy, Williamsburg, VA, 1989 ( Abstract )

    Google Scholar 

  88. Verfaillie C, Miller W, Kay N: Adherent lymphokine-activated killer cells in chronic myelogenous leukemia: A benign cell population with potent cytotoxic activity. Blood 1989 (74):793–797

    Google Scholar 

  89. Whiteside TL: Tumor-infiltrating lymphocytes as antitumor effector cells. Biotherapy 1992 (in press)

    Google Scholar 

  90. Gorelik E, Gunji Y, Herberman RB: H-2 antigen expression and sensitivity of B-16 melanoma cells to natural killer cytotoxicity. J Immunol 1988 (140):2096–2102

    Google Scholar 

  91. Hanna N, Burton RD: Definitive evidence that natural killer (NK) cells inhibit experimental tumor metastasis in vivo. J Immunol 1981 (127):1754–1759

    Google Scholar 

  92. Barlozzari T, Leonhard TJ, Wiltrout RH: Direct evidence for the role of LGL on the inhibition of experimental tumor metastasis. J Immunol 1985 (134):2783–2789

    Google Scholar 

  93. Pollack SB, Hallenbeck LA: In vivo reduction of NK activity with anti-NK1 serum: Direct evaluation of NK cells in tumor clearance. Int J Cancer 1982 (29):203–207

    Google Scholar 

  94. Barlozzari T, Reynolds CW, Herberman RB: In vivo role of natural killer cells: Involvement of large granular lymphocytes in the clearance tumor cells in anti-asialo GM-1 treated rats. J Immunol 1983 (131 ):1024–1027

    Google Scholar 

  95. Helletier H, Olsson N-L, Faely C: Differential sensitivity to natural cell-mediated cytotoxicity of two rat colon adenocarcinoma variants differing in their tumorigenicity: Identification of the effector cells as natural killer cells. Cancer Immunol Immunother 1988 (26):263–268

    Google Scholar 

  96. Takasugi M, Ramseyer A, Takasugi J: Decline of natural nonselective cell-mediated cytotoxicity, in patients with tumor progression. Cancer Res 1977 (37):413–418

    Google Scholar 

  97. Pross HF, Baines MG: Spontaneous human lymphocyte-mediated cytotoxicity against tumor targer cells. I. The effect of malignant disease. Int J Cancer 1976 (18):593–604

    Google Scholar 

  98. Steinhauer EH, Doyle AT, Reed J, Kadish A: Effective natural cytotoxicity in patients with cancer: Normal number of effector cells but decreased recycling capacity in patients with advanced disease. J Immunol 1982 (129):2255–2259

    Google Scholar 

  99. Tursz T, Dokhelar M, Lipinski M: Low natural killer cell activity in patients with malignant lymphoma. Cancer 1982 (50):2333–2335

    Google Scholar 

  100. Cunningham-Rundles S, Philippa DA, Braun DW: Natural cytotoxicity of peripheral blood lymphocytes and regional lymph node cells in breast cancer in women. JNC11981 (67):585–590

    Google Scholar 

  101. Pross HF, Baines MG: Low natural killer (NK) cell activity in the peripheral blood of metastasis-free cancer patients is associated with reduced metastasis-free survival time. Proceedings of the 19th International Leukocyte Conference, Alberta, Canaca 1988 ( Abstract )

    Google Scholar 

  102. Schantz SP, Brown BW, Lira E: Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer. Cancer Immunol Immunother 1987 (25):141–145

    Google Scholar 

  103. Schantz SP, Goepfert HG: Multimodality therapy in distant metastasis: The impact of natural killer cell activity. Arch Otolaryngol Head Neck Surg 1987 (112):545–551

    Google Scholar 

  104. Whiteside TL, Ernstoff MS, Nair S: In vitro generation and in vivo effects of adherent lymphokine-activated killer cells and IL-2 in patients with solid tumors. Proc 6th Internat Killer Cell Workshop 1990 (in press)

    Google Scholar 

  105. Rosenberg SA: Immunotherapy of cancer using interleukin-2: Current status and future prospects. Immunol Today 1988 (9):58–62

    Article  PubMed  CAS  Google Scholar 

  106. West WH, Tauer KW, Yannelli JR: Constant- infusion recombinant IL-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 1987 (316):898–905

    Google Scholar 

  107. Adler A, Chervenick P, Whiteside T: lnterleukin-2 induction of lymphokine-activated killer (LAK) activity in the peripheral blood and bone marrow of acute leukemia patients. I. Feasibility of LAK generation in adult patients with active disease and in remission. Blood 1988 (71):709–716

    Google Scholar 

  108. Lotzova E, Savary CA: Generation of NK cell activity from human bone marrow. J Immunol 1987 (139):279–284

    PubMed  CAS  Google Scholar 

  109. Ruco LP, Procopio A, Maccallini V: Severe deficiency of natural killer activity in the peripheral blood of patients with hairy cell leukemia. Blood 1983 (61 ):1132–1137

    Google Scholar 

  110. Newhonen T, Teerenhovi L, Saksela E: Increased number of functionally defective large granular lymphocytes in lymphoma patients. Nat Immun Cell Growth Regul 1987 (6):57–64

    Google Scholar 

  111. Dickenson A, Proctor SJ, Jacobs E et al: Natural killer cell activity in childhood acute lymphoblast leukemia in remission. Br J Haematol 1985 (59):45–53

    Article  Google Scholar 

  112. Oshimi K, Oshimi Y, Akutsu M et al: Cytotoxicity of interleukin-2-activated lymphocytes for leukemia and lymphoma cells. Blood 1986 (68):938–948

    PubMed  CAS  Google Scholar 

  113. Herberman RB: Immune surveillance: Updated formulation and possible effector mechanisms. In: Tada T (ed) Progress and Immunology V. Academic Press, New York 1983 pp 1157–1167

    Google Scholar 

  114. Bonavida B, Katz J, Gottlieb M: Mechanism of defective NK cell activity in patients with acquired immunodeficiency syndrome (AIDS) and AIDS- related complex. I. Defective trigger of NK cells for NKCF production by target cells, and partial restoration by IL-2. J Immunol 1986 (137):1157–1163

    Google Scholar 

  115. Hanto D, Frizzera G, Gajil-Peczalska K: Epstein-Barr virus, immunodeficiency, and B cell lymphoproliferation. Transplantation 1985 (39):461–472

    Google Scholar 

  116. Purtilo D, Sakamoto K, Saemundsen A: Documentation of Epstein-Barr virus infection in immunodeficient patients with life-threatening lymphoproliferative diseases by clinical, virological, and immunopathological studies. Cancer Res 1981 (41):4226–4235

    Google Scholar 

  117. Haliotis T, Roder JC, Klein M: Chediak-Higashi gene in humans. I. Impairment of natural killer function. J Exp Med 1980 (151 ):1029–1048

    Google Scholar 

  118. Ho M, Jaffe R, Miller G et al: The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestation in children. Transplantation 1988 (45):719–727

    Article  PubMed  CAS  Google Scholar 

  119. Starzl TE, Nalesnik MA, Porter KA: Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steröid therapy. Lancet 1985 (1):583–587

    Google Scholar 

  120. Hersey P, Edwards A, Huniman M et al: Low natural killer cell activity in familial melanoma patients and their relatives. Br J Cancer 1979 (40):113–122

    Article  PubMed  CAS  Google Scholar 

  121. Strayer DR, Carter WA, Brodsky I: Familial occurrence of breast cancer is associated with reduced natural killer cell cytotoxicity. Breast Cancer Res Treat 1986 (7):187–192

    Article  PubMed  CAS  Google Scholar 

  122. Strayer DR, Carter WA, Mayberry SD et al: Low natural cytotoxicity of peripheral blood mononuclear cells in individuals with high familial incidences of cancer. Cancer Res 1984 (44):370–374

    PubMed  CAS  Google Scholar 

  123. Schantz SP, Romesdani MM, Bobcock GF et al: The effect of surgery on natural killer cell activity in head and neck cancer patients: In vitro reversal of a postoperatively suppressed immunosurveillance system. Laryngoscope 1985 (95):588–594

    Article  PubMed  CAS  Google Scholar 

  124. Botha JH, Robinson KM, Ramchurren N et al: Human esophageal carcinoma cell lines: Prostaglandin production, biological properties and behavior in nude mice. JNCL 1986(76):1053–1056

    CAS  Google Scholar 

  125. Heiskala MK, Stenman UH, Koivunen E: Characteristics of soluble tumor-derived proteins that inhibit natural killer activity. Scand J Immunol 1988 (28): 19–27

    Google Scholar 

  126. Son K, Kew M, Rabson AR: Depressed natural killer cell activity in patients with hepatocellular carcinoma: In vitro effects of interferon and levamisole. Cancer 1982 (50):2820–2825

    Google Scholar 

  127. Stern P, Gidlund M, Orn A: Natural killer cells mediate lysis of embryonal carcinoma cells lacking MHC. Nature 1980 (205):341–342

    Google Scholar 

  128. Gidlund M, Orn A, Pattengale PK: Natural killer cells kill tumor cells at a given stage of differentiation. Nature 1981 (292):848–850

    Google Scholar 

  129. Gorelik E, Wiltrout RH, Okumuro K: Role of NK cells in the control of metastatic spread of tumor cells in mice. Int J Cancer 1982 (30):107–112

    Google Scholar 

  130. Karre K, Ljunggren HG, Piontek G: Selective rejection of H-2 deficient lymphoma variants suggests alternative immune defense strategy. Nature 1986 (319):675–678

    Google Scholar 

  131. Henderson C, Canellos G: Cancer of the breast: The past decade. N Engl J Med 1980 (30):302–317

    Google Scholar 

  132. Levy S, Herberman R, Lippman M et al: Correlation of stress factors with sustained depressionof natural killer cell activity and predicted prognosis in patients with breast cancer. J Clin Oncol 1987 (5):348–353

    PubMed  CAS  Google Scholar 

  133. DeLaRocque L, Olej B, Zalis NM: Natural killer activity in skin cancer. The Cancer J 1989 (2):383–385

    Google Scholar 

  134. Hersey P, Edwards A, Milton G et al: Relationship of cell-mediated cytotoxicity against melanoma cells: Prognosis in melanoma patients. Br J Cancer 1978(37):505–513

    Article  Google Scholar 

  135. Hersey P, Hobbs A, Edwards A et al: Tumor related changes and prognostic significance of natural killer cell activity in melanoma patients. In: Herberman RB (ed) NK Cells and Other Natural Effector Cells. Academic Press, New York 1982 pp 1167–1174

    Google Scholar 

  136. Kornstein MJ, Rosemary R, Elder D: Natural killer cells in the host response to melanoma. Cancer Res 1987 (47):1411–1412

    Google Scholar 

  137. Lotzova E, Savary CA, Herberman RB: Impaired NK cell profile in leukemia patients. In: Lotzova E and Herberman RB (eds) Immunology of Natural Killer Cells, Vol 2. CRC Press, Boca Ration, FL 1987 pp 29–53

    Google Scholar 

  138. Herberman RB: Characteristics of LAK cells and their use in adoptive therapy of cancer in experimental animals. In: Mertelsmann R (ed) Lymphohaematopoietic Growth Factors in Cancer Therapy. European School of Oncology Monograph Series. Springer-Verlag, Heidelberg 1990 pp 25–36

    Google Scholar 

  139. Herberman RB: LAK cells for the adoptive therapy of cancer. Forum: Trends in Exp Clin Med 1991 (1. 2 ): 106–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herberman, R.B., Vujanovic, N., Rabinowich, H., Whiteside, T.L. (1992). Natural Killer Cells and Interleukin-2-Activated Killer Cells. In: Mertelsmann, R. (eds) Lymphohaematopoietic Growth Factors in Cancer Therapy II. ESO Monographs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77801-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77801-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77803-2

  • Online ISBN: 978-3-642-77801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics