Doing Sequence Analysis by Inspecting the Order in which Neural Networks Learn

  • S. Brunak

Abstract

The worldwide interest in artificial neural networks that has emerged during the 1980’es has its origins in the dual nature of neural networks: they belong to the class of non-linear dynamical systems, but can also be used as general modeling devices for such systems. Non-linear dynamical systems have traditionally been extremely difficult to model, theoretically or experimentally.

Keywords

Tyrosine Glycine Serine Proline Carbonyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.J., Lautrup, B., Nørskov, L., Olsen, O.H. & Petersen, S.B. (1988). Protein Structure and Homology by Neural Networks. FEBS Letters 241, 223–228.PubMedCrossRefGoogle Scholar
  2. Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.J., Fredholm, H., Lautrup, B., & Petersen, S.B. (1990). A Novel Approach to prediction of the 3-dimensional structures of protein backbones by neural networks. FEBS Letters 261, 43–46.PubMedCrossRefGoogle Scholar
  3. Brunak, S., Engelbrecht, J. & Knudsen, S. (1990). Cleaning up gene databases. Nature 343, 123.PubMedCrossRefGoogle Scholar
  4. Brunak, S., Engelbrecht, J. & Knudsen, S. (1990). Neural Network Detects Errors in the Assignment of pre-mRNA Splice Sites. Nucl. Acids Res. 18, 4797–4801.CrossRefGoogle Scholar
  5. Brunak, S., Engelbrecht, J. & Knudsen, S. (1990). Prediction of human mRNA donor and acceptor sites from the DNA sequence, Preprint, November 1990.Google Scholar
  6. Chreighton T.E. (1984). Proteins — Structures and Molecular Properties, Freeman, New York.Google Scholar
  7. Green, M. R. (1986). Pre-mRNA Splicing. Ann. Rev. Genet. 20, 671–708.PubMedCrossRefGoogle Scholar
  8. Holley, L.H. and Karplus, M. (1989). Protein Secondary Structure Prediction With a Neural Network. Proc. Natl. Acad. Sci. 86, 152–156.PubMedCrossRefGoogle Scholar
  9. Kabsch, W. & Sander, C. (1983). Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 22, 2577–2637.PubMedCrossRefGoogle Scholar
  10. Kneller, D. G, Cohen, F. E. & Langridge, R. (1990). Improvements in Protein Secondary Prediction by An Enhanced Neural Network. J. Mol. Biol. 214, 171–182.PubMedCrossRefGoogle Scholar
  11. Lapedes, A., Barnes, C., Burks, C., Farber, R. & Sirotkin, K. (1990) “Application of Neural Networks and Other Machine Learning Algorithms to DNA Sequence Analysis.” The Proceedings of the Interface Between Computation Science and Nucleic Acid Sequencing Workshop, Dec. 1988 in Santa Fe, New Mexico. Eds. G.I. Bell and T.G. Marr. Proceedings of the Santa Fe Institute vol. VII, 157–182, Addison-Wesley.Google Scholar
  12. Minsky, M. & Papert, S. (1969, 1988). Perceptrons. MIT Press, Cambridge, Massachusetts.Google Scholar
  13. Qian, N. & Sejnowski, T.J. (1988). Predicting the Secondary Structure of Globular Proteins Using Neural Network Models. J. Mol. Biol. 202, 865–884.PubMedCrossRefGoogle Scholar
  14. Richardson, J.C. & Richardson, D.C. (1989). Principles and Patterns of Protein Conformation, in: Prediction of Protein Structure and the Principles of Protein Conformation, ed. G.D. Fasman, Plenum, 1–98.CrossRefGoogle Scholar
  15. Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan Books. New York.Google Scholar
  16. Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986) In Rumelhart, D.E., McClelland, J.L. and the PDP Research Group (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge, Massachusetts, vol. I, 318–362.Google Scholar
  17. Sejnowski, T.J. & Rosenberg, C.R. (1987). Parallel Networks that Learn to Pronounce English Text. Complex Systems 1, 145–168.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • S. Brunak
    • 1
  1. 1.Department of Structural Properties of MaterialsThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations