Skip to main content

Equilibrium Distribution of Secondary Structures for Large RNA

  • Conference paper
Computation of Biomolecular Structures
  • 45 Accesses

Abstract

The full distribution of secondary structures for a given RNA (length N < 500) has been available since 1988 using the partition function based calculation developed by the author (McCaskill 1990). All possible non-knotted secondary structures contribute to binding probabilities of base pairs in the equilibrium ensemble. These may be effectively displayed logarithmically as a matrix of scaled boxes. This scalar calculation is of order AT3 in time and N 2 in the storage of intermediate information. Here we demonstrate that this computation may be extended to sequences of lengths 5000 to 10000, providing the only feasible means of gaining structural information on viral size RNA. The development requires a further reduction in the computational order of the algorithm. A careful segmentation and large exponent vectorization reduces the core storage requirements to order N * V, where V is the vectorization length. This is achieved at the cost of an additional contribution to the time of order (N/V) * S, where S is the time to retrieve an N × N array from mass storage (e.g. disk).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Been MD, Barfod ET, Burke JM, Price JV, Tanner NK, Zaug AJ, Cech TR (1987) Structures involved in Tetrahymena rRNA self-splicing and RNA enzyme activity. Cold Spring Harbor Symp.Quant.Biol. 52: 147–157.

    PubMed  CAS  Google Scholar 

  • Bellman R, Kaluba R (1960) On Kth best policies. J.Siam 8: 582–588.

    Google Scholar 

  • Cech TR, Tanner NK, Tinoco I. Jr, Weir BR, Zuker M, Perlman PS (1983) Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: structural homology with fungal mitochondrial intervening sequences. Proc. Natl. Acad. Sci. USA 80: 3903–3907.

    Article  PubMed  CAS  Google Scholar 

  • Eigen M, McCaskill JS, Schuster P (1988) The Molecular Quasispecies. J. Phys. Chem. 92: 6881–6891.

    Article  CAS  Google Scholar 

  • Turner DH, Sugimoto N, Jaeger JA, Longfellow CE, Freier SM, Kierzek R (1987) Improved parameters for prediction of RNA structure. Cold Spring Harbor Symp.Quant.Biol. 52: 123–133.

    PubMed  CAS  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and Intractability. A Guide to the Theory of NP-completeness. Freeman, New York.

    Google Scholar 

  • Gibbs AJ, McIntyre GA (1970) The diagram, a method for comparing sequences. Eur.J.Biochem. 16: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Bio polymers 29: 1105–1119.

    CAS  Google Scholar 

  • Pleij CWA, Bosch L (1989) RNA pseudoknots: structure, detection and prediction. Methods in Enzymology 180: 289–303.

    Article  PubMed  CAS  Google Scholar 

  • Salser W (1977) Globin mRNA sequences: analysis of base pairing and evolutionary implications. Cold Spring Harbor Symp.Quant.Biol. 42: 985–1002.

    Google Scholar 

  • Tinoco I Jr, Uhlenbeck OC, Levine MD (1971) Estimation of secondary structure in ribonucleic acids. Nature 230: 362–367.

    Article  PubMed  CAS  Google Scholar 

  • Waterman MS (1978) Secondary structure of single-stranded nucleic acids. Studies in Foundations and Combinatorics. Advances in Mathematics Supp. Studies. 1: 167–212, Academic Press.

    Google Scholar 

  • Waterman MS, Smith TF (1978) RNA secondary stucture: a complete mathematical analysis. Math.Biosci. 42: 257–266.

    Article  CAS  Google Scholar 

  • Wüthrich, K (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.

    Google Scholar 

  • Zuker M, Sankoff D (1984) RNA secondary structures and their prediction. Bull.Math.Biol 46: 591–621.

    CAS  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl. Acids Res. 9: 133–148.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McCaskill, J.S. (1993). Equilibrium Distribution of Secondary Structures for Large RNA. In: Soumpasis, D.M., Jovin, T.M. (eds) Computation of Biomolecular Structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77798-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77798-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77800-1

  • Online ISBN: 978-3-642-77798-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics