Skip to main content

The Structure of DNA Four-Way Junctions

  • Conference paper
Computation of Biomolecular Structures

Abstract

The stereochemical conformation of the four-way helical junction in DNA (the Holliday junction; the putative central intermediate of genetic recombination) has been analyzed, using molecular mechanical computer modelling. A version of the AMBER program package was employed, that had been modified to include the influence of counterions and a nonlocal optimisation procedure.

The problem of local minima can be reduced considerably by searching a subspace of relevant conformations. The choice of relevant subspace depends solely on the problem under study. The Bremermann routine has been used for nonlocal optimisation within the subspace. This method has been applied to the structure of a DNA four-way junction. As a result three distinct structures (and their intermediates) have been found. One structure is closely related to a square-planar cross, in which there is no stacking interaction between the four double helical stems. This structure is probably closely similar to that observed experimentally in the absence of cations. The remaining two structures are based on related, yet distinct, conformations, in which there is pairwise coaxial stacking of neighbouring stems. In these structures, the four DNA stems adopt the form of two quasi-continuous helices, in which base stacking is very similar to that found in standard B-DNA geometry. The two stacked helices so formed are not aligned parallel to each other, but subtend an angle of approximately 60°.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Bhattacharyya A, Murchie AIH, von Kitzing E, Diekmann S, Kemper B and Lilley DM J (1991) Model for the Interaction of DNA Junctions and Resolving Enzymes. J Mol Biol 221 1191–1207

    Article  PubMed  CAS  Google Scholar 

  • Bremermann H (1970) A Method of Unconstrained Global Optimization. Math Biosci 9 1–15

    Article  Google Scholar 

  • Broker TR and Lehman IR (1971) Branched DNA Molecules: Intermediates in T4 Recombination. J Molec Biol 60 131–149

    Article  PubMed  CAS  Google Scholar 

  • Calascibetta FG, de Santis P, Morosetti S, Palleschi A, Savino M (1984) Modelling the DNA Cruciform Core. Gazz Chim Ital 114 437–441

    CAS  Google Scholar 

  • Churchill MEA, Tullius TD, Kallenbach NR and Seeman NC (1988) A Holliday recombination intermediate is twofold symmetric. Proc Natl Acad Sci USA 85 4653–4656

    Article  PubMed  CAS  Google Scholar 

  • Cooper JP and Hagermann PJ (1989) Geometry of a branched DNA structure in solution. Proc Natl Acad Sci USA 86 7336–7340

    Article  PubMed  CAS  Google Scholar 

  • Dickerson RE (1989) Definitions and nomenclature of nucleic acid structure parameters. EMBO J 8 1–4

    Google Scholar 

  • Duckett DR, Murchie AIH, Diekmann S, von Kitzing E, Kemper B and Lilley DMJ (1988) The Structure of the Holliday Junction and Its Resolution. Cell 55 79–89

    Article  PubMed  CAS  Google Scholar 

  • Duckett DR, Murchie AIH, Lilley DMJ (1990a) The role of metal ions in the conformation of the four-way DNA junction. EMBO J 9 583–590

    PubMed  CAS  Google Scholar 

  • Duckett DR, Murchie AIH, Clegg RM, Zechel A, von Kitzing E, Diekmann S and Lilley DMJ (1990b) The Structure of the Holliday Junction. Sarma RH and Sarma MH (edts) Struture & Methods Vol. 1: Human Genome Intitiative & DNA Recombination. Adenine Press New York 157–182

    Google Scholar 

  • Elborough KM and West SC (1990) Resolution of synthetic Holliday junctions in DNA by an endonuclease activity from calf thymus. EMBO J in the press

    Google Scholar 

  • Fletcher R (1980) Practical Methods of Optimization Vol 1. John Wiley & Sons Chichester New York Brisbane Toronto

    Google Scholar 

  • McGavin S (1989) Four-Strand Structure, Kinks and Cruciforms in DNA. J theor Biol 138 117–128

    Article  PubMed  CAS  Google Scholar 

  • E vKitzing, DMJ Lilley, S Diekmann: The Structure of DNA Four-Way Junctions

    Google Scholar 

  • Hoess R, Wierzbicki A and Abremski K (1987) Isolation and characterization of intermediates in site-specific recombination. Proc Natl Acad Sci USA 84 6840–6844

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5 282–304

    Article  Google Scholar 

  • IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCNB) (1983) Abbreviations and Symbols for the Description of Conformations of Polynucleotide Chains. In: Pullman B Jortner J (eds) Nucleic acids: the vectors of life. Reidel Dortrecht pp 559–565

    Google Scholar 

  • Jayaram M, Crain KL, Parsons RL and Harshey RM (1988) Holliday junctions in FLP recombination: Resolution by step-arrest mutants of FLP protein. Proc Natl Acad Sci USA 85 7902–7906

    Article  PubMed  CAS  Google Scholar 

  • von Kitzing E (1986) Molekülsimulation mit Hilfe von Kraftfeldrechnungen am Beispiel der Aggregation von Nukleinsäuren verschiedener Konformation zu einem Komplex mit Ubersetzungsfunktion. edition herodot/Rader Verlag Aachen

    Google Scholar 

  • von Kitzing E and Diekmann S (1988) Molecular mechanics calculations of dA12dT 12 and of the curved molecule d(GCTCGAAAAA)td(TTTTTCGAGC) 4 . Eur Biophys J 15 13–26

    Google Scholar 

  • von Kitzing E, Lilley DMJ and Diekmann S (1990) The Stereochemistry of DNA Four-Way Junctions, a theoretical study. Nucl Acids Res 18 2671–2683

    Article  Google Scholar 

  • von Kitzing E (1992) Modeling DNA structures. Prog Nucl Acid Res 43 87–108

    Article  Google Scholar 

  • Kitts PA and Nash HA (1987) Homology-dependent interaction in phage λ site-specific recombination. Nature 329 346–348

    Article  PubMed  CAS  Google Scholar 

  • Klement R, Soupasis DM, von Kitzing E and Jovin TM (1990) Inclusion of Ionic Interactions in Force Field Calculations of Charged Biomolecules — DNA Structural Transitions. Biopol 29 1089–1103

    Article  CAS  Google Scholar 

  • Klement R, Soupasis DM and Jovin TM (1991) Computation of ionic distributions around charged biomolecular structures: Results for right-handed and left- handed DNA. Proc Natl Acad Sci USA 88 4631–4635

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ, and Kemper B (1984) Cruciform-Resolvase Interactions in Supercoiled DNA. Cell 36 413–422

    Article  PubMed  CAS  Google Scholar 

  • Meselson MS and Radding CM (1975) A General Model for Genetic Recombination. Proc Natl Acad Sci USA 72 358–361

    Article  PubMed  CAS  Google Scholar 

  • Mueller JE, Kemper B, Cunningham RP, Kallenbach NR and Seeman NC, (1988) T4 endonuclease VII cleaves the crossover strands of Holliday junction analogs. Proc Natl Acad Sci USA 85 9441–9445

    Article  PubMed  CAS  Google Scholar 

  • Murchie AIH, Clegg RM, von Kitzing E, Duckett DR, Diekmann S and Lilley DMJ (1989) Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules. Nature 341 763–766

    Article  PubMed  CAS  Google Scholar 

  • E vKitzing, DMJ Lilley, S Diekmann: The Structure of DNA Four-Way Junctions

    Google Scholar 

  • Murchie AIH, Carter WA, Portugal J and Lilley DMJ (1990) The tertiary structure of the four-way DNA junction affords protection against DNase I cleavage. Nucl Acids Res 18 2599–2606

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Düby SE, Matsomoto L and Landy A (1987) Site-specific Recombination Intermediates Trapped with Suicide Subtrates. Cell 50 779–788

    Article  PubMed  Google Scholar 

  • Orr-Weaver TL, Szostak JW and Rothstein RJ (1981) Yeast transformation: A model system for the study of recombination. Proc Nati Acad Sci USA 78 6354–6358

    Article  CAS  Google Scholar 

  • Rao GS, Tyagi RS and Mishra RK (1981) Calculation of the Minimum Energy Conformation of Acetylcholine using a Global Optimization Technique. Int J Quant Chem 20 273–279

    Article  CAS  Google Scholar 

  • Rinnoy Kan AHG, Boender CGE and Timmer GTh (1985) in Klaus Schittowsky (ed.) Computational Mathematical Programming Springer Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Shanno DF (1978) On the Convergence of a new conjugated gradient algorithm. SIAM J Numer Anal 15 1247–1252

    Article  Google Scholar 

  • Shakked Z and Rabinovich D (1986) The effect of the base sequence on the fine structure of the DNA double helix. Prog Biophys molec Biol 47 159–195

    Article  CAS  Google Scholar 

  • Sigal N and Alberts B (1972) Genetic Recombination: The nature of a Crossed Strand-exchange between Two Homologous DNA Molecules. J Mol Biol 71 789–793

    Article  PubMed  CAS  Google Scholar 

  • Sobell HM (1972) Molecular Mechanism for Genetic Recombination. Proc Natl Acad Sci USA 69 2483–2487

    Article  PubMed  CAS  Google Scholar 

  • Sobell HM (1974)In Mechanisms in recombination. (Ed Grell RF) Plenum New York 433–438

    Google Scholar 

  • Timsit Y, Westhof E, Fuchs RPP and Moras D (1989) Unususal helical packing in crystals of DNA bearing a mutation hot spot. Nature 341 459–462

    Article  PubMed  CAS  Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S jr. and Weiner P (1984) A new Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J Am Chem Soc 106 765–784

    Article  CAS  Google Scholar 

  • West SC, Parsons CA and Picksley SM (1987) Purification and Properties of a Nuclease from Saccharomyces Cerevisiae That Cleaves DNA at Cruciform Junctions. J Biol Chem 262 12752–12758

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von Kitzing, E., Lilley, D.M.J., Diekmann, S. (1993). The Structure of DNA Four-Way Junctions. In: Soumpasis, D.M., Jovin, T.M. (eds) Computation of Biomolecular Structures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77798-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77798-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77800-1

  • Online ISBN: 978-3-642-77798-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics